ModelE3 development approach

Global data → ESM tuning

Field campaigns —> LES —> Single-column model (SCM)

Conditions	Case study	Aerosol aware?
dry convective boundary layer	idealized [Bretherton and Park 2009]	—
dry stable boundary layer	GABLS1 [Cuxart et al. 2006]	—
marine stratocumulus	DYCOMS-II RF02 [Ackerman et al. 2009]	observed (2 modes)
marine trade cumulus (shallow)	BOMEX [Siebesma et al. 2003]	no
marine trade cumulus (deep, raining)	RICO [van Zanten et al. 2011]	no
marine stratocumulus-to-cumulus *	SCT [Sandu and Stevens 2011]	no
continental cumulus ^	RACORO [Vogelmann et al. 2015]	observed profile (3 modes)
Arctic mixed-phase stratus	M-PACE [Klein et al. 2009]	observed (2 modes)
Antarctic mixed-phase stratus *	AWARE [Silber et al. 2019, 2021, 2022]	estimated (1 mode)
tropical deep convection	TWP-ICE [Fridlind et al. 2012]	observed profile (3 modes)
mid-latitude synoptic cirrus *	SPARTICUS [cf. Mühlbauer et al. 2014]	no
mid-latitude cold-air outbreak *^	ACTIVATE [Tornow et al., 2021, 2022, in prep.]	observed profile (3 modes)
high-latitude cold-air outbreak *^	COMBLE [Tornow et al., in prep.]	observed/estimated profiles (3 modes w/INP)
marine cumulus and congestus *^	CAMP2Ex [Stanford et al., in prep.]	observed profiles (3 modes)
subtropical marine deep convection **	SEAC4RS [Stanford et al., in prep.]	observed profiles (TBD)
continental sea breeze convection *^	TRACER [Matsui et al., in prep.]	observed profiles (TBD)
*Leavencies (of Negrove IANAEC 2015, Dither at al NetCoo 2010)		

*Lagrangian (cf. Neggers JAMES 2015, Pithan et al. NatGeo 2019) ^ensemble (cf. Neggers et al. JAMES 2019)

Ice formation approach

- Only physically-based mechanisms and parameterizations
- Avoid unnecessary complexity
- Each mechanism should be demonstrably active in observed case studies
- Heterogeneous freezing mechanisms should be linkable to aerosol properties
- But start with diagnostic INP, e.g. immersion mode
 - DeMott et al. 2010 * $f_{scale_{iifn}}$
 - f_{scale_iifn} < 1 can crudely account for efficient precipitation scavenging (Fridlind et al. JAS 2012)

M-PACE

fixed N_{ic}

ARM/ASR Joint User Facility and PI Meeting • 24 October 2022 • ann.fridlind@nasa.gov

NASA

NASA ACTIVATE

riming consumes CCN
[Tornow et al. ACP 2021]
applicable to grey zone
[de Roode et al. 2019]

MODIS Aqua Imagery

Highly supercooled drizzle over Antarctica

- CTT ≈ -25°C
- initially stable atmosphere
- large-scale ascent —> thin supercooled cloud layer
- LW cooling —> thickening turbulent layer
- N_c ≈ 20/cm3, N_i ≈ 0.1/L

AWARE campaign case study (Silber et al. JGR 2019)

NASA

AWARE case study

• SCM performs quite well

AWARE, 009.0 h

3000

2500

2000

1500

1000

500

0

243

t (K)

254

£

Silber et al. [GMD 2021]

see

 stable conditions common (Silber et al. ACP 2020; GRL 2021)

3000

2500

2000

1500

1000

500

01

0.0

e_turb (m2/s2)

0.6

(E

Tuning Protocol

- scale_iifn is one of 45 parameters taken to be poorly constrained
- LES/SCM used to estimate parameter ranges
- satellite dataset uncertainties are specified

source: Greg Elsaesser

Metrics (36 in total)	Data Source
Radiation (Longwave [LW], Shortwave [SW])	CERES-EBAF-Ed4.1
Cloud Radiative Forcing (LWcrf, SWcrf)	CERES-EBAF-Ed4.1
Column Water Vapor (CWV)	*Obs4MIPS RSS, G-VAP
Specific Humidity profiles (qv)	*Obs4MIPS AIRS, MLS
Temperature profiles (T)	*Obs4MIPS AIRS, MLS, GNSS-RO
Total Liquid Water Path (TLWP)	*MAC-LWP, GPM/TRMM
Total Ice Water Path (TIWP)	*CloudSat, MODIS
Total Precipitation (Pr)	*GPCP, GPM/TRMM
Convective Precipitation (Prc)	GPM/TRMM
Total Cloud Cover (TCC)	CloudSat/CALIPSO, ISCCP
Low (Shallow Cu, StratoCu) Cloud Cover	CloudSat/CALIPSO
Cloudtop Droplet Number Concentration	*MODIS (Bennartz, Grosvenor)
Surface Wind (W)	*WindSat, QuikSCAT
Liquid-to-ice transition Temperature/Height	CALIPSO

ModelE3 emulator based on 450 1-year atmosphere runs

Latin Hypercube sampling in a 45-dimensional parameter state space. Lots of empty state space; emulator (neural network) fills in the gaps.

Example Penalty State Space Transect for any given model metric

source: Marcus van Lier-Walqui

After The Machine

• photo of white board at GISS

Obs

E2.1 – Obs

E3.tun2 – Obs

source: Greg Elsaesser

Aerosol indirect effect and ECS from E3 candidates

- AIE from 2000-2010 AMIP runs, PD minus PI offline aerosol for droplet activation only
- ECS from 30-year Q-flux PI runs

ModelE3 supercooled cloud fraction vs CALIPSO

- COSP simulator modified to see "precipitation"
- note: cloud ice is continuous with precipitating ice (e.g., Fridlind et al. JAS 2012)
- "precipitation" also affects cloud feedbacks across ModelE3s

Cesana et al. (GRL 2021, Fig. S6)

COSP simulator revision tested on SCM AWARE case

NASA

A new ground-based lidar/radar simulator: EMC²

- Earth Model
 Column
 Collaboratory
- Python open source, community code base
- tool to evaluate supercooled cloud fraction, cloud base and surface precipitation, ...

*EMC*² microphysics

Silber, Jackson, Collis et al. (GMD, 2021)

Observing supercooled layers

- lidar attenuated? use soundings
- colocated radar reflectivity identifies precipitation at sounding cloud bases

Precipitation from supercooled clouds

ModelE3 vs retrieved cloud base precipitation rate

Which Arctic supercooled clouds are *not* precipitating?

- >7 years of DOE ARM data over North Slope of Alaska
- >80% of detected cloud layers are precipitating at most cloud top temperatures
- similar statistics when excluding (layers receiving ice from aloft
- non-precipitating tend to be
 - warmer at cloud top
 - thinner cloud layers
 - lower liquid water paths
 - non-turbulent

Silber et al. [ACP, 2021, Figure 2]

MATRIX scheme

Bauer et al. [ACP 2008, 2010] Gao et al. [GMD 2017]

AEROICESTUDY: An ARM Southern Great Plains Pilot Study to Assess a Field-

Stony Brook University

allow watte

vstem Research

Observational Approach to Conduct Aerosol-Ice Formation Closure

Knopf, D. A., Barry, K. R., Brubaker, T. A., Jahl, L. G., Jankowski, K. A., Li, J., Lu, Y., Monroe, L. W., Moore, K. A., Rivera-Adorno, F. A., Sauceda, K. A., Shi, Y., Tomlin, J. M.,

Vepuri, H. S. K., Wang, P., Lata, N. N.,

Levin, E. J. T., Creamean, J. M., Hill, T. C. J., China, S., Alpert, P. A., Moffet, R. C., Hiranuma, N., Sullivan, R. C., Fridlind, A. M., West, M., Riemer, N., Laskin, A., DeMott, P. J., Liu, X.

U.S. DEPARTMENT OF

Knopf et al. (BAMS 2021)

Goals and Objectives

- Identify ice nucleation parameterizations that produce the most robust predictions of INP number concentrations.
- What are the crucial aerosol physicochemical properties to guide ice nucleation representations in models and long-term INP measurements?
- What level of parameter details needs to be known to achieve aerosol-INP closure?
- What are the leading causes for climate model bias in INP predictions?

Apply ambient aerosol to evaluate the aerosol composition-INP relationship.

INP reservoir dynamics in SHEBA case study

- 1D Python model prognosing INP, N_{ice}
- if INP are rapidly activated in mixedphase clouds, loss to precipitation will be important (cf. Fridlind et al. 2012)
- if an INP scheme introduces INP diversity within a modal class, tracking loss adds complexity

Manuscript in prep.

 primary and secondary ice formation
 + rain formation and mesoscale structure
 + gravity waves, surface fluxes, ice properties, aerosol-cloud interactions, ...

ARM/ASR Joint User Facility and PI Meeting • 24 October 2022 • ann.fridlind@nasa.gov

ESM

Tropical deep convection (TWP-ICE)

- How do you make a mass size distribution peak at D_{eq}≈300 μm?
 - ~ ≈1 cm⁻³ ice crystals
 warmer than −10°C
 [cf. Lawson et al. 2015, ICE-T]

Springtime in Oklahoma during MC3E

BASE

obs1

obs2

10000

NU-WRF/MORR

0,14

0.12

0.06

0.04 0.02

0.00

100

6 0.10

dN/dlogD (#/cm 0.08

similar conditions as HAIC/HIWC

20110520 BASE iwc(0,2-0,4)

1000

Central Bin (um)

1.5×10

1.0×10

5.0×10

dM/dlogD (g/cm ^3)

-23°C

Citation

Fridlind et al. [ACP 2017]

100

- despite grossly differing updraft strength
- unknown multiplication mechanism(s)

Tropical deep convection (MCS conditions)

- Korolev et al. [ACP 2020]
 - examined flight legs at -15 < T < 0°C
 - state-of-the-art instrumentation
 - pristine faceted crystals D < 60 μ m
 - best estimate N_i >> INP
 - drops D > 40 μm necessary but not sufficient
 - graupel or rimed particles often missing
 - points to drop shattering
 [e.g., Lauber et al. 2018]

Takeaways

- Foundations of model development using machine learning
 - NU-WRF/LES/SCM library of observation-based cases (field campaigns)
 - adding Lagrangian case study ensembles with realistic aerosol
 - focus on understanding key <u>process-level knowledge gaps</u> (may require additional laboratory data, new instruments)
 - e.g., GCCN, ice < 100–200 um, detailed aerosol and INP, GWs, ...
 - improving use of machine learning to define allowable phase space
 - global data sets for global tuning (relies on <u>well-defined uncertainty</u>)
- Site-based process-oriented model evaluation
 - focus on key <u>process-level performance</u> (e.g., supercooled cloud precip, morphology, cloud regimes, GWs, ...)
 - improving coordination with satellite obs, scratching the surface so far

