An Overview of TRACER (+) Science and Operations

Michael P. Jensen, Chongai Kuang Brookhaven TRACER Science and Operations Team TRACER breakout, ARM/ASR Meeting 24 October 2022

Cross-cutting Motivations and High-Level Science Objectives

The **humid subtropical climate** of the Houston region, with large and diverse aerosol sources, provides an **excellent setting for the study of aerosolconvection-pollution interactions**.

The **impacts of aerosols on convective vigor** (updraft strength, precipitation amount, mass flux and anvil area) require improved process level understanding.

In the Houston region, sea-breeze dynamics often interact with local urban and industrial emissions to degrade air quality. An improved understanding of these pollution challenges is crucial for public health and environmental equity.

The interaction of coastal and urban circulations play an important role in **convective cloud lifecycle, influencing the dynamics of updrafts and downdrafts, precipitation formation, and lightning occurrence**. An improved understanding of these processes is necessary for accurate forecasting and prediction.

TRACER IOP Deployment

https://www.arm.gov/research/campaigns/amf202ltracer

01 Oct. '21 – 30 Sep. '22 IOP June – Sep. 2022

 AMF1 – La Porte
C-SAPR Site - Pearland
ARM Ancillary Site – Guy
UH Coastal Center (UAV, CUBIC)

Lemon Reservoir (UAV)
6a. Seawolf Park (TAMU)
6b. Hempstead (TAMU)

6c. Waller (TAMU)

6d. Hocksley (TAMU)

- 7. Moody Tower, UH
- 8. Aldine (CUBIC)

Field Campaigns – Houston, TX Summer 2021-Summer 2022

Tracking Aerosol Convection interactions ExpeRiment (TRACER) – Oct '21 - Sep '22 DOE Atmospheric Radiation Measurement (ARM)

TRACER-Air Quality (AQ) – Sep '21 NASA Tropospheric Composition Research NASA Health and Air Quality Applied Sciences Texas Commission on Environmental Quality

TRACER Intensive Operational Period (IOP) – Jun '22 - Sep '22 DOE ARM & Atmospheric System Research

Experiment of Sea breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) 31 May '22 – 27 Jun '22 National Science Foundation

Convective cloud – Urban Boundary layer Experiment (CUBE) – Summer '22 National Science Foundation

TRACER AQ2 – Summer '22 Texas Commission on Environmental Quality

TRACER+ by the numbers

5 Participating Agencies (DOE, NSF, NASA, TCEQ, NOAA) **38** TB of Data (so far) **40** Enhanced Operational Days ~ 45 Participating Institutions ~ 50 contributors to daily forecast briefings **122** ARM Intensive Operational Days **50** Tethered Balloon Flights ~ 150 field participants **8** ARM Forecast briefings **88** ARM data streams ~ 395 ARM Operational Days **1885** ARM Sounding launches

Daily TRACER IOP Operations

Contributions from TRACER Science and Operations Team

ighter colors show earlier morning profile

52 profiles show developing boundary layer

TRACER Sonde

Data set: 65 ozonesondes from free release balloons at Main site in La Porte, TX

- Twice-daily pair released at 11Z and 15Z (July Sept.)
 - <u>17 of 32 days</u> were TRACER enhanced sounding days
 - Radiosondes released at 15Z on 6 additional TRACER enhanced sounding days
 - Some days coordinated with TRACER MAP

Image courtesy of Dié Wang

Dié Wang (BNL, left)

Nadia Partida (UH, center)

Minnie Park (BNL, right)

Baylor University: Sascha Usenko and Rebecca Sheesley University of Houston: James Flynn, Yuxuan Wang, and Nadia Partitda St. Edward's University: Paul Walter

Stereo Camera Observations during TRACER

Point Cloud of Cloud Points on September 9, 2021

Industrial Plume on February 14, 2022

Isolated plumes forming atop chemical plants on June 22, 2022

TRACER-UAS

Flight Statistics:

Aircraft	CU RAAVEN	OU CopterSonde2
Flight Days	47	33
Flights	131	546
Profiles	251	544
Elight Hours	197	56

o.05 کے

0.03

0.0

0 100 200 300 400 500 600

Example Flight Day (23 June):

McCormack Reservoir

For more info, see poster or contact Gijs de Boer (gijs.deboer@colorado.edu)

TAMU TRACER: Targeted Mobile Measurements to Isolate the Impacts of Aerosols and Meteorology on **Deep Convection**

Anita D. Rapp, Sarah Brooks, Chris Nowotarski M. Sharma, E. Nielsen, M. Etten-Bohm, S. Thompson, B. Chen, R. Li, and B. Hendrickson

particle size, concentration, vertical

Brookhaven

National Laboratory

200

300 400 500

Atmospheric thermodynamic and dynamic profiles measured with iMet-4 radiosondes

TAMU IOP SUMMARY

Total number of IOP days	22 joint radiosonde/aerosol 7 radiosonde only 10 aerosol only	June – 5 July – 2, 6, 3 August – 10, 2 September – 6, 5
Type of air mass sampled	Continental – 32 Maritime – 16 Convective outflow – 6 Outflow recovery – 3 Post frontal – 1	Continental – NW Houston Maritime - Galveston

This work is supported by DE-SC0021047, AFC07023, AFC07055

Sea-breeze Dynamics during TRACER IOP

Dié Wang¹, Michael Jensen¹, Emily Melvin², Noah Smith³, Ayman Abdullah-Smoot⁴, Natalia Pszeniczny⁵, Siddhant Gupta¹ ¹Brookhaven National Laboratory, ²Georgia Institute of Technology, ³Occidental College, ⁴Texas Southern University ⁵General Douglas MacArthur High School

Motivation:

Understanding structures of different types of sea breezes (SB) and lifecycle characteristics of SB induced convective clouds.

Methods:

- Identify SB boundaries using radar and satellite images and determine SB timing based on ARM surface meteorological data.
- Classify SB events based on surface gradient wind direction.
- Quantify SB dynamics, thermodynamics, and associated cloud and radiation properties using multi-platform datasets.

Preliminary Results:

- 46 SB events are identified during the TRACER IOP with the majority being corkscrew SB embedded in southwesterly winds.
- Corkscrew SB promotes stronger, deeper, and wider updrafts within the boundary layer compared to backdoor SBs that are formed in northeasterly gradient winds.
- A higher cloud fraction is observed during corkscrew SB events compared to that during backdoor SB events.

Polarimetric radar & lightning analysis and high-resolution simulations to support TRACER science goals Marcus van Lier-Walqui, Toshi Matsui, Taka Iguchi, Eric Bruning, Kelcy Brunner,

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Jessica Souza, Ann Fridlind

ESCAPE Aircraft Measurements

G. McFarquhar & S. Patil/University of Oklahoma; P. Kollias, Stonybrook; M. Wolde/NRC; R. Bruintjes and P. Lawson/SPEC; R. Shaw MTU; Others

Motivation:

Use high temporal & spatial resolution aircraft remote & in-situ data to investigate role of meteorology & aerosol in altering deep convection intensity and evolution

Instruments:

Convair-580: Aerosol (CCN, UHSAS, SP2, CPC, CVI, CFDC), In-situ cloud (CDP, FCDP, 2D-S, CIP, PIP, HVPS, HOLODEC, RICE, Nevzorov), State/Vapor (Licor, T, Edgetech, AIMMS-20), Radar (W-band, X-band, Lidar) Lear: In-situ cloud (2D-Gray, 2D-S, HVPS-4, FFSSP, FCDP, Hawkeye), turbulence (AIMSS-20) and radar (KPR)

Unique Set of Data

• 13 Flights of Convair-580 and 11 flights of SPEC Learjet made in large variety of conditions

Compare SDs between all probes & algorithms

03-Jun-2022 00:45:00 to 03-Jun-2022 00:50:00

Example of Observations in Heavy Updrafts, 9 June 2022, C-RF06

• X band radar observations from repeated traverses through same cell at different temperatures.

