Next Gen AERI System Based on Spatial Heterodyne Spectrometry

Jonathan Gero, Zach Buckholz, Marco Kurzynski, Joe Taylor

University of Wisconsin-Madison, Space Science and Engineering Center, Madison, WI, USA

ARM ASR PI Meeting 2022 Breakout on New and Emerging Technologies

October 24, 2022

Next Gen SHS AERI Summary

• Uses spatial heterodyne spectrometry (SHS)

- Developed at UW Physics in 1990s, local expertise
- · Combination of Fourier transform spectrometer with gratings
- · Uses position sensitive detector array instead of temporal image sampling in FTS / AERI
- · Mainly used in UV astronomy applications, minimal in IR
- To measure downwelling spectral IR radiance, 715 790 cm⁻¹, 0.5 cm⁻¹ resolution, for profiling temperature and water vapor

• Novel aspects:

- · Instrument hardware designed to optimally work with AERIoe retrieval
- No precision moving parts, simple robust optical system
- · Smaller, simpler, hardier instrument, less maintenance: lower instrument and operational cost
- Designed as a networkable instrument from the ground up, easily deployable in 1s, 10s, 100s

Currently TRL 4: Breadboard validation in lab environment

- · Use existing SHS from UW Physics operating in UV-VIS
- Currently tuning imaging system and data processing pipeline
- Plan to make atmospheric NO₂ measurements with the breadboard in spring 2023
- · Next phase is to build SHS operating in thermal IR, 1-3 years to develop

• Benefit to ARM / ASR

- Thermodynamic profiler, smaller physical size compared to AERI, lower fixed cost
- Substantially easier maintenance compared to AERI, lower operating costs
- · Designed for deployment in large terrestrial networks, improved observations over large geographic regions
- Technology can also be adapted to trace gas observations

Spatial Heterodyne Spectrometry (SHS)

Instrument development:

Harlander et al. 1992, 2003; Lawler et al. 2008; Gardner et al. 2017, Englert et al. 2004

Applications:

Watchorn et al. 2010; Mierkiewicz et al. 2006; Corliss et al. 2015; Englert et al. 2008, 2009, 2010; Harlander et al. 2017; Gardner et al. 2017; Langille et al. 2019

AERI vs. SHS Comparison

	AERI	SHS	
Bandpass	Broad	Optimized for retrieval	
Optical throughput	Nominal	Field-widened	
SNR	Nominal	Higher	
Instrument size	Nominal	Smaller	
Design complexity	Precision FTS	No precision moving parts	
Detector	Cooled single pixel	Uncooled array	
Consumables	Stirling cooler, metrology laser	None	
Maintenance	Highly skilled labor	Minimal	
Large network operation	Not easily scalable	Scalable	

SHS Breadboard

Processing software

SHS Breadboard Specifications

General

Magnification	1.94		
	25222 1		
Max wavenumber	25000 cm ⁻¹		
Min wavenumber	22222 cm ⁻¹		
Resolving power	63500		
Used grating horizontal size	3.56 mm		
Used grating vertical size	5.67 mm		
Theoretical limit of resolution	0.35 cm^-1		
FOV diameter (no field widening)	66.8 mrad		
Aperture size	380 mm^2		
Etendue	5.32 mm^2 sr		

Imaging System

Magnification	2
M1 radius of curvature	1 m
M2 radius of curvature	-0.33 m
M3 radius of curvature	0.5 m

Grating

Blaze angle	63	degrees
Pitch	0.00431	cm
Full horizontal size	4.6	cm
Full vertical size	9.6	cm
FSR	130.2	cm⁻¹
Single grating tilt	13.7	mrad

Detector

Pitch	5.86 um
Horizontal pixels	1920
Vertical pixels	1200
Quantum Efficiency	60%
Read noise (@ gain=16)	3 e rms
Dark current (@ 0 C)	0.62 e/s
Full well capacity	32000 e

