

1

2

3

4

5

6

AERODYNE RESEARCH, Inc.

CAPS NO_x Monitor

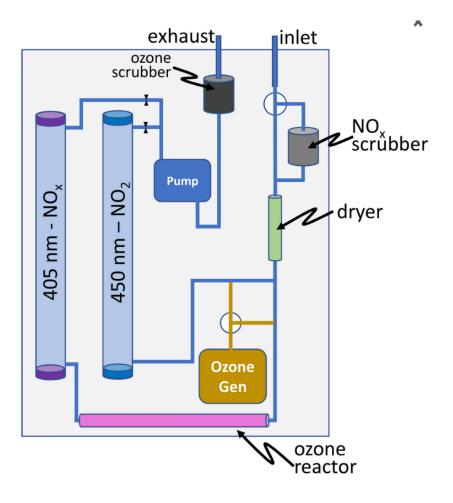
Timothy B Onasch Rob Roscioli Andrew Freedman Aerodyne Research, Inc.

Introduction, Background, and Motivation

- Nitrogen cycle is a biogeochemical process that encompasses key roles in the atmosphere (e.g., $NO_x = NO + NO_2$) and in bio/soil/water (e.g., reactive nitrogen, Nr).
- Robust, inexpensive measurements of emissions, fluxes, and chemical composition are required to understand the nitrogen cycle and its impacts.
- CAPS NO_x monitor is being developed as a rapid, robust, inexpensive measure of NO_x and Nr
- **Measures NO_x as NO₂** by converting NO using photolytic • production of O_3
- Sample response times up to **10 Hz** •

1

2


3

4

5

6

- Combined with Total Reactive Atmospheric Nitrogen Converter • (TRANC) to measure Nr
- **Technology Readiness Level: 5-6** •

Comparison with Other Techniques

- CAPS monitors are **field deployable** for mobile sampling (e.g., mobile labs, aircraft)
- CAPS monitors are **easy to use** with automated and autonomous operation deployed successfully many times by non-Aerodyne technicians
- CAPS monitors are **inexpensive** to purchase and operate

Advantages

- Direct measurement of analyte (NO₂) •
- Specific, well-characterized chemical conversion of NO to $\ensuremath{\text{NO}_2}$
 - Compared with non-specific NO₂ to NO conversion
- Automated and autonomous operation
- Low weight and power requirements
- Minimal maintenance

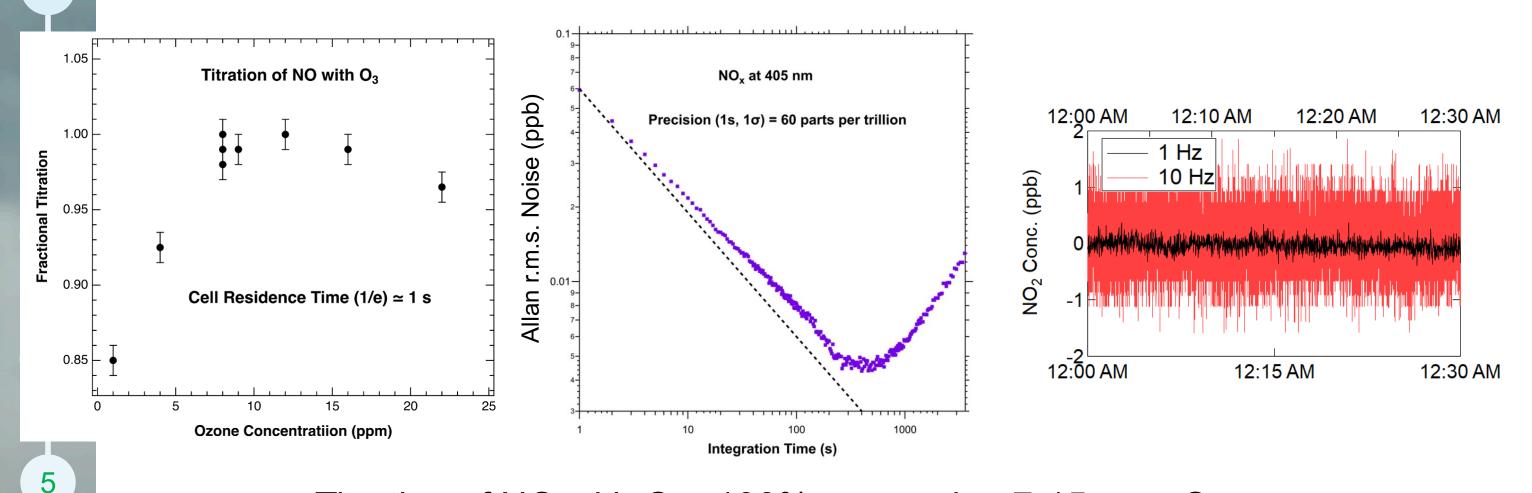
1

2

3

4

5


6

- Calibrated with NO gas tank
- Customization Available

Disadvantages

- Higher detection limits than CLD/LIF methods
 - · Limit free tropospheric capabilities
- Spectral interference from glyoxal and methylglyoxal
- Number density detection
 - Pressure-dependent sensitivity
- NO_{v} not measured
 - Third channel could potentially be added to CAPS with catalyst

Titration, Calibration, Noise, Sample Rate

- Titration of NO with $O_3 \sim 100\%$ conversion 7-15 ppm O_3
- NO calibration at 405 nm

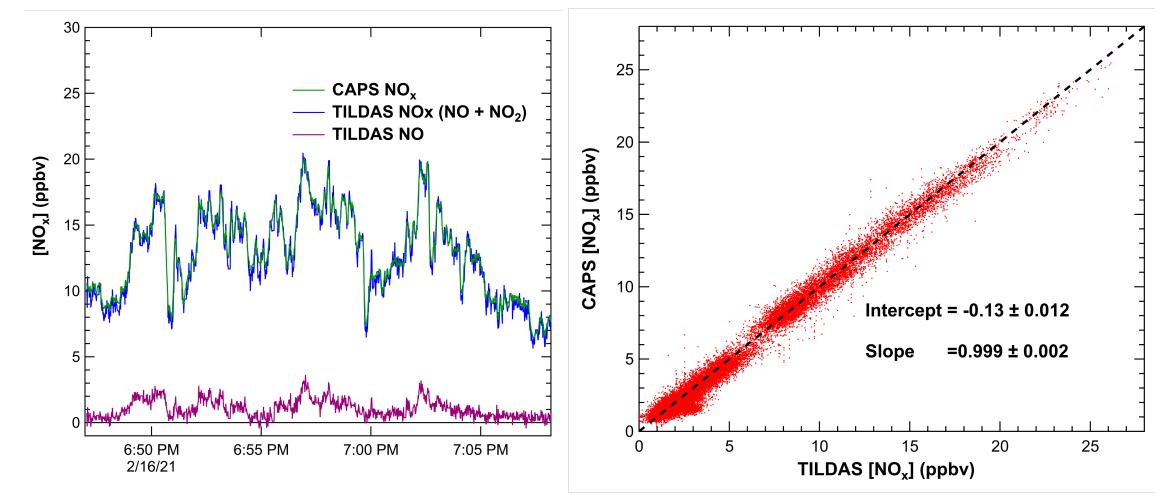
1

6

- Noise / Detection Limits: 1 σ ~60 ppt @ 1 Hz
- Sample rates up to 10 Hz

Comparison of Field Deployed CAPS NO_x Monitor and TILDAS Trace Gas Analyzer

1


2

3

4

5

6

Comparison of 1 second measurements on Aerodyne Mobile Laboratory from CAPS NO_x and TILDAS NO_x (NO+NO₂) monitors.

1

2

3

4

5

Summary

Aerodyne CAPS NO_x is currently being developed under DOE and NASA **SBIR** projects

- CAPS Total Reactive Nitrogen
 - TRANC front-end to convert reactive nitrogen to NO₂
 - Eddy flux with up to 10 Hz response time (involves both software and hardware changes)

DOE Phase I Project (Contract #: 80NSSC20C0467)

- CAPS $NO_x = NO_x + NO_2 two cell design$
 - \circ Direct replacement of Chemiluminescence NO_x-Box technology/instruments
 - True NO₂ measurement
 - White paper submitted to DOE AAF meeting March 2020
 - NASA Phase II Project (Contract #: 80NSSC20C0467)

