

1

2

3

4

5

6

AERODYNE RESEARCH, Inc.

CAPS PM_{SSA} Monitor

Timothy B Onasch Stephen Jones Fred Bacon **Benjamin Moul Andrew Freedman** Aerodyne Research, Inc.

Introduction, Background, and Motivation

- Atmospheric particles directly affect the Earth's radiative balance through scattering and absorbing solar and terrestrial radiation.
- Robust, direct measurements of particulate extinction, scattering, and absorption are required to understand these direct effects and their climate impacts.
 - CAPS PM_{SSA} monitors measure absolute extinction and scattering Extinction – Cavity Attenuated Phase Shift Technique Scattering – Inverse Integrating Nephelometer Absorption = Extinction - Scattering SSA=Scattering/Extinction
 - Technology Readiness Level: 9
 - Commercially available
 - Field / Lab proven

1

2

3

4

5

6

CAPS technique

1

2

3

4

5

6

- Cavity-attenuated phase-shift technology and incorporating an integrating sphere •
- Simultaneously measures two of the three aerosol optical parameters from the • same air sample

LASIC deployment

- CAPS PMssa deployed during LASIC at 530 nm wavelength
- Measured from August 4 to September 22, 2017

6

Simultaneous measurements with NEPH/PSAP for SSA and PSAP for ABS

CAPS scattering truncation modeling

- Zemax OpticsStudio[™] full CAD model
 - Ray tracing and Monte-Carlo
 - Multiple reflections within glass tube •
 - Assumes Mie scattering
- Results ullet

1

2

3

4

5

6

- Zemax model matches measured • truncation data
- Glass tube reduces collection of forward • scattered light at large angles of incidence
- Extended sample volume outside of the ٠ integrating sphere offsets a fraction of the effects of the glass tube
- Scattering truncation similar to current Nephelometers

1

2

3

4

5

6

Summary

- Aerodyne CAPS PM_{SSA} was recently developed under DOE and NASA **SBIR** projects
 - Successful commercial instrument
- Community Validation and Applications
 - Laboratory validation •
 - Onasch et al., 2015 •
 - Perim de Faria et al., 2021
 - Soot source characterization
 - Corbin et al., 2019
 - Intensive aerosol optical properties
 - Weber et al., 2022
 - Absorption measurement
 - Modini et al. 2021
 - Humidified single scattering albedo monitor
 - Carrico et al. 2021

