Ground-based Water Vapor Atmospheric Vertical Profiler

David S. Bomse^{*1}, J. Houston Miller², Monica F. Flores², Anthony Gomez¹, and Rachel Greene²

 ¹ Mesa Photonics, 1550 Pacheco Street, Santa Fe, NM 87505, USA
² Department of Chemistry, George Washington University, Washington, DC 200521, USA Email: dbomse@mesaphotonics.com

ARM/ASR PI Meeting

Breakout Session on New and Emerging Technologies

October 24, 2022

DoE DE-SC0019543 (DOE Phase II SBIR)

Ground-based Water Vapor Atmospheric Vertical Profiler Overview

- Technology precision <u>heterodyne</u> oxygen-corrected spectrometer (PHOCS)
- Project goal is determining full atmospheric column H₂O profiles at > 99% precision
- Advances & improvements:
 - Spectral resolution 100 MHz (.003 cm⁻¹), or better
 - Absorbances < 1%
 - Statistical retrieval methods
 - Automated long-term deployment
- TRL 7 to 8

Ground-based Water Vapor Atmospheric Vertical Profiler PHOCS

- Technology precision <u>heterodyne</u> oxygen-corrected spectrometer (PHOCS)
 - Optical analogue of FM radio
 - Optical resolution determined by rf lowpass filter
 - Balanced receiver reduces laser common mode noise (30 dB or better)

Ground-based Water Vapor Atmospheric Vertical Profiler PHOCS Details

Ground-based Water Vapor Atmospheric Vertical Profiler Goal

• Project goal is determining full atmospheric column H₂O profiles at > 99% precision

Observed and fit water and oxygen lines near 1278 nm.

Ground-based Water Vapor Atmospheric Vertical Profiler Advances & Improvements

