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e BOSS provides a level playing-field to judge structural choices

® Direct-fit fidelity does not indicate online accuracy — adequate
constraint is critical to evaluate structural choices

e Autoconversion is improved by including a 3rd moment of the
cloud distribution (M6)

e Bayesian estimation of parametric error in the presence of
structural errors is not trivial (not discussed here)

e Other structural choices (single vs. two liquid categories) are
currently under investigation

® Accuracy vs. precision: how to quantify & propagate structural
and parameteric uncertainties?
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JEFE (Sean P. Santos)
JEFE: Measuring Predictability

JEFE: Jacobian Evaluation of Functional Error

Figure 3:Adjoint-model-derived estimates of relative error of highly-

accurate bulk schemes for cloud mass (left) and radar reflectivity (right).
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A Challenge: inference complicated by state
errors, initial & boundary condition uncertainty

Some aspects of the atmosphere behave chaotically: errors “Data Assimilation” — correcting the state of a model forecast
grow nonlinearly from small perturbations, reducing predictability with observations

How to learn physics when simulation error may

be dominated by initial condition error?

Lorenz (1963) Tandeo et al. (2018)
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Model error may be easier to tackle in
Global, fiecadal mgan sudaf:eairtemperature Climate SimUIGtiOns:
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ModelE Physical Process
Parameterizations

Top-down tuning of
ModelE using
MCMC and ML,
informed by global
satellite data

Microphysics

— Global-scale observations
Surrogate (e.g. Satellite clouds,
Shallow cloud Model radiances, ice cover, ocean

temperature)

Climate System

“Bottom-up”
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Future work uniting
bottom-up and top-
down approaches

Future work

using observations to
improve process-level
understanding





