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Boundary layer characteristics
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Coastal-Urban Transect
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Location

High updrafts observed during the convective period in the urban core. The nocturnal boundary layer over land falls to less
than 400 m while during the daytime reaches a peak of around 2500 m. High anthropogenic heat contribution through A/C use.



Stochastic generation of
heterogeneous patterns
representing natural landscapes

Zun Yin
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Surface heterogeneity in land-atmosphere interactions
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by LES simulations (Simon et al., 2021 JAMES)




Surface heterogeneity in land-atmosphere interactions
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A case study over the Great South Plain
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A conceptual study based on LES
simulations (Lee et al., 2019 JAS)



Attribution of heterogeneity impacts to different features

e Fixed surface

* Highly coupled features
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Attribution of heterogeneity impacts to different features
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Highly coupled features
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Heterogeneous patterns derived
from the Google Earth



Attribution of heterogeneity impacts to different features

A simple approach (e.g., quantifying feature a)
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Attribution of heterogeneity impacts to different features

A simple approach (e.g., quantifying feature a)

a = air, fixed a = ao; fixed a = as; fixed
other features other features other features
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Prerequisites

1. Understanding key
heterogeneity features

2. Getting patterns with

specific features

3. Spatial independence of
patterns within a cluster




Heterogeneity features & Modified Conway’s Game of Life (MCGL)

e Spatial mean (W)
e Standard deviation (S)

* Clustering
 Moran’s/ (/)
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Heterogeneity features & Modified Conway’s Game of Life (MCGL)

* Spatial mean (M) This model is established by employing the
 Standard deviation (S) reaction-diffusion system discovered by Alan
. Clustering Turing to Conway’s Game of Life.
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Advantages of MCGL

e Stability: One simulation generates
numerous patterns with the same
features
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Advantages of MCGL

e Stability: One simulation generates
numerous patterns with the same
features

® Independence: Patterns from the same

simulation have low spatial correlations.

® Broad coverage: MCGL can generate
patterns with 0.28<M <0.7and 0 =/ <
0.71.
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Spatial Variability of Convective
Mixing Layer at the SGP Supersite

Z. Wang!(Zhien.wang@Colorado.edu), L. Xue?, Y. Chul, H. H. Shin?, and W. Li?, 1- CU-Boulder, 2- NCAR
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MLH Spatial Variations

» Differences in MLHs over
the five sites could be over
50 % of the mean.

» Summer season and
afternoon have larger intra-
site variations.

» Relative difference are
during the starting and
decaying periods.

» Large afternoon variations
highlight the importance of
PBL top entrainment.

(a) Five-site mean ML height; (b) Maximum difference (highest MLH
minus lowest MLH; (c¢) Difference ratio of ML height ((highest MLH
minus lowest MLH)/mean MLH); (d) the peak MLH for every site.



Factors Controlling MLH Developments

Santanello et al. 2018

» LTS (low tropospheric stability) dependency
indicates that the nocturnal BL has a strong
control of convective mixing layer
development.

» Under the same LTS, MLH dependencies on

energy supply vary among four sites.

MLH at 11:30 am as a function of LTS and
Integrated Energy Supplies



NWP-Based Large-Scale Forcing Impacts on Real-Case LES

Statistical Analysis of LASSO LES

Hyeyum (Hailey) Shin?, Lulin Xue?!, Zhien Wang?, Weiwei Li, Yufei Chu?, and William |. Gustafson Jr.3 (:NCAR, 2CU-Boulder, 3PNNL)

= Backgrounds

= Objectives

= DOE LASSO

DATA Gustafson
et al. (2020)

= Analysis

* Uncertainty in NWP-based large-scale forcing (LSF) is carried over to fine-
scale simulations (e.g., Gustafson et al. 2020)

* Large-scale environmental conditions control PBL and convective clouds
developments (e.g., Donner & Phillips 2003; Zhang & Klein 2010, 2013)

1) Identify key meteorological parameters that lead to the most/least skillful
prediction of the continental shallow cumulus (ShCu) convection over the
Southern Great Plains

2) Compare performance of different LASSO LSF sources in prediction of the
key parameters

100-m LES driven by NWP-based LSF
e 82 ShCu cases in 2016-2019 warm seasons observed over the SGP
8 LSF sources (including no LSF) for each case

Bulk PBL and cloud parameters 1) Group by prediction skills
Large-scale environmental conditions 2) Group by LSF sources



1) Cloud Prediction Skills ” ~* Cloud top height [km]

8 o High Mid Low e No LSF 8
» 28% of low skill simulations produce

deep convection; only 3% of high skill
simulations predict deep convection.
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2) Large-Scale Forcing Sources * Humidity in the lower free

troposphere [%]

» Differences are noticeable only
when Deep Cu is simulated.
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e Differences in simulated deep convection is related to early morning inversion and RH in the lower
free troposphere after early morning.



Quantifying the contributions from the surface,

advection, and entrainment on the evening
transition at SGP

Siwei He (siwei.he@noaa.gov), David D. Turner, Joseph B. Olson,
Stanley G. Benjamin, Tatiana G. Smirnova, and Tilden Meyers

NOAA Global System Laboratory
CIRES, University of Colorado Boulder

October 27, 2022



Afternoon to evening transition

* ABL is directly influenced by land
surface

* SBL - CBL - SBL - CBL ...

* Afternoon to evening transition is the
short period before sunset.

From Angevine et al. (2020)



Afternoon to evening transition

* ABL is directly influenced by land
surface

* SBL - CBL - SBL - CBL ...

* Afternoon to evening transition is the
short period before sunset.

* Previous studies found that:
* Water vapor increase
* Temperature drop
* Wind speed decay

From Angevine et al. (2020)



Afternoon to evening transition

* 2-m mixing ratio diurnal variations over different ol IR
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Afternoon to evening transition

* The moisture increase is due to evapotranspiration from the surface.

* The moisture increase is due to water vapor advection.

* The moisture is transported from higher in the CBL towards the surface.

0q Sq du;q’




Unified Forecast System (UFS) Single Column Model

* The UFS (https://ufscommunity.org/) is a community-based, coupled,
comprehensive Earth modeling system.

* Physics:
* MYNN-EDMF boundary layer and shallow cloud scheme
* MYNN surface layer scheme
* RUC land surface model

* Initial and Forcing:
* NOAA rapid refresh (RAP) analysis data

* Vertical layer = 128
* Time step = 150 seconds
 Several clear-sky days were selected



Observations

Simulations
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Thank you!





