
ModelE3 development approach

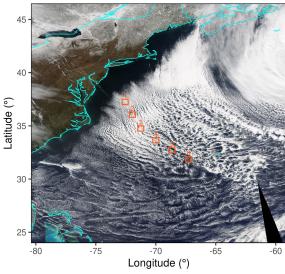
Global data → ESM tuning

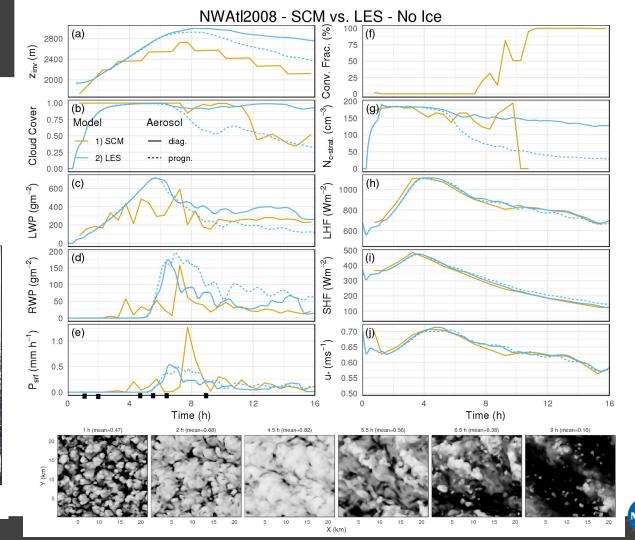
ARM/ASR Joint User Facility and PI Meeting • 25 October 2022 • ann.fridlind@nasa.gov

Field campaigns —> LES —> Single-column model (SCM)

Conditions	Case study	Aerosol aware?
dry convective boundary layer	idealized [Bretherton and Park 2009]	—
dry stable boundary layer	GABLS1 [Cuxart et al. 2006]	—
marine stratocumulus	DYCOMS-II RF02 [Ackerman et al. 2009]	observed (2 modes)
marine trade cumulus (shallow)	BOMEX [Siebesma et al. 2003]	no
marine trade cumulus (deep, raining)	RICO [van Zanten et al. 2011]	no
marine stratocumulus-to-cumulus *	SCT [Sandu and Stevens 2011]	no
continental cumulus ^	RACORO [Vogelmann et al. 2015]	observed profile (3 modes)
Arctic mixed-phase stratus	M-PACE [Klein et al. 2009]	observed (2 modes)
Antarctic mixed-phase stratus *	AWARE [Silber et al. 2019, 2021, 2022]	estimated (1 mode)
tropical deep convection	TWP-ICE [Fridlind et al. 2012]	observed profile (3 modes)
mid-latitude synoptic cirrus *	SPARTICUS [cf. Mühlbauer et al. 2014]	no
mid-latitude cold-air outbreak *^	ACTIVATE [Tornow et al., 2021, 2022, in prep.]	observed profile (3 modes)
high-latitude cold-air outbreak *^	COMBLE [Tornow et al., in prep.]	observed/estimated profiles (3 modes w/INP)
marine cumulus and congestus *^	CAMP2Ex [Stanford et al., in prep.]	observed profiles (3 modes)
subtropical marine deep convection *^	SEAC4RS [Stanford et al., in prep.]	observed profiles (TBD)
continental sea breeze convection *^	TRACER [Matsui et al., in prep.]	observed profiles (TBD)
*Lagrangian (cf. Neggers JAMES 2015, Pithan et al. NatGeo 2019)		

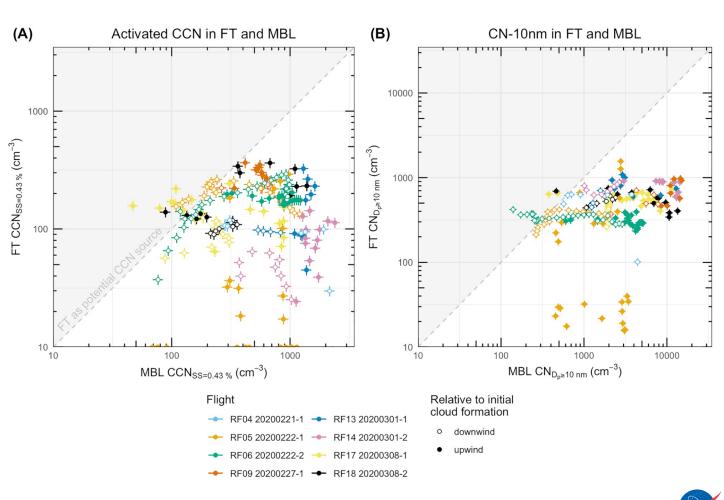
*Lagrangian (cf. Neggers JAMES 2015, Pithan et al. NatGeo 2019) ^ensemble (cf. Neggers et al. JAMES 2019)




ARM/ASR Joint User Facility and PI Meeting • 25 October 2022 • ann.fridlind@nasa.gov

NASA ACTIVATE

riming consumes CCN
[Tornow et al. ACP 2021]
applicable to grey zone
[de Roode et al. 2019]


MODIS Aqua Imagery

ACTIVATE

of FT air reduces CCN in the MBL [Tornow et al. GRL 2021]

AEROICESTUDY: An ARM Southern Great Plains Pilot Study to Assess a Field-

Stony Brook University

allow watte

vstem Research

Observational Approach to Conduct Aerosol-Ice Formation Closure

Knopf, D. A., Barry, K. R., Brubaker, T. A., Jahl, L. G., Jankowski, K. A., Li, J., Lu, Y., Monroe, L. W., Moore, K. A., Rivera-Adorno, F. A., Sauceda, K. A., Shi, Y., Tomlin, J. M.,

Vepuri, H. S. K., Wang, P., Lata, N. N.,

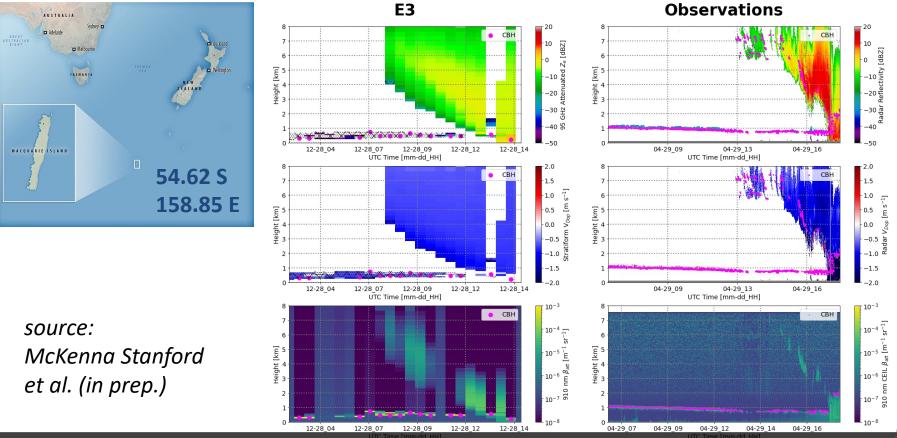
Levin, E. J. T., Creamean, J. M., Hill, T. C. J., China, S., Alpert, P. A., Moffet, R. C., Hiranuma, N., Sullivan, R. C., Fridlind, A. M., West, M., Riemer, N., Laskin, A., DeMott, P. J., Liu, X.

U.S. DEPARTMENT OF

Knopf et al. (BAMS 2021)

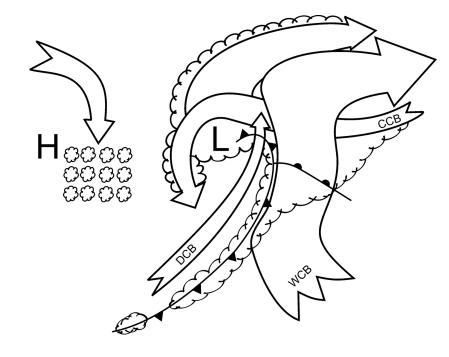
Goals and Objectives

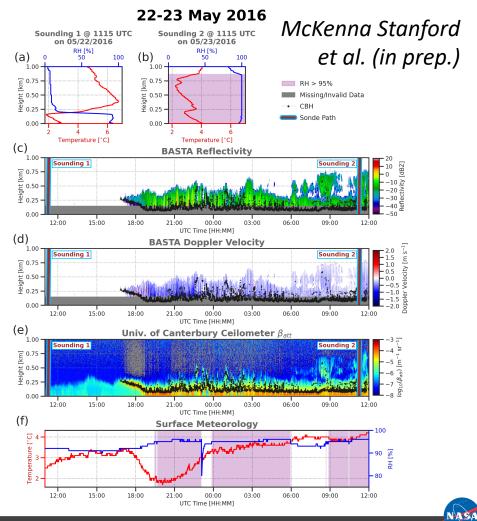
- Identify ice nucleation parameterizations that produce the most robust predictions of INP number concentrations.
- What are the crucial aerosol physicochemical properties to guide ice nucleation representations in models and long-term INP measurements?
- What level of parameter details needs to be known to achieve aerosol-INP closure?
- What are the leading causes for climate model bias in INP predictions?


Apply ambient aerosol to evaluate the aerosol composition-INP relationship.

A feasible integrated data set for model <u>development</u>?

- a <u>survey</u> of <post-frontal clouds> suitable for an aerosol-aware Lagrangian ensemble of case studies (cf. ACTIVATE and COMBLE)
 - <u>explicit focus on unconstrained processes that limit confidence in all models</u>
 - rain and ice formation mechanisms in well-defined aerosol/cloud regimes, ...
 - long enough to attract aircraft participation? EVS-4? (cf. CAMP2Ex RSP)
- simultaneous constraints on thermodynamics, aerosol, cloud
 - frequent soundings (MBL stability, entrained air properties)
 - liquid water path (including raining conditions; arguably most important?)
 - cloud base droplet number concentration (Leipzig group lidar approach?)
 - full aerosol PSD (supermicron, modal kappa, composition, lidar closure?)
 - within MBL and above MBL (several size cuts with UAV?)
 - ice nucleating particle measurements and INP composition via filter
 - suitable for closure analysis (cf. AEROICESTUDY)
 - radar with Doppler spectra, HSRL, ice crystal properties (UAV imagery? MASC-like?)


ModelE3 vs obs using EMC² [Silber et al. GMD 2022]


ARM/ASR Joint User Facility and PI Meeting • 25 October 2022 • ann.fridlind@nasa.gov

NASA

Fog during MICRE

Tselioudis and Grise (2020)

ARM/ASR Joint User Facility and PI Meeting • 25 October 2022 • ann.fridlind@nasa.gov