Chemical Imaging of Vertically Resolved Atmospheric Particles Collected in Past and Ongoing Field Studies

A. Laskin, Purdue University

Airborne Biological Particles from Crops Harvesting

- emissions vary with plant life cycle
- break down during RH cycling, release accumulation mode fragments

https://pubs.acs.org/doi/10.1021/acs.est.6b02896

Airborne Biological Particles from Crops Harvesting

- emissions vary with plant life cycle
- break down during RH cycling, release accumulation mode fragments

Purdue University Airborne Laboratory for Atmospheric Research (ALAR) P. Shepson, PI

Particle-Type Composition

Unsupervised machine learning algorithm: K-means clustering

CO organics CNO/S CO/S Ca-dust AlSi-dust <u>Biological I, II</u> Corn Field Samples – 28419 particles Soybean Field Samples – 10649 particles

• Biological particles are 40-50% of >1.0 μ m particles 5-10% of <0.5 μ m particles

Tomlin et al, 2020, https://dx.doi.org/10.1021/acsearthspacechem.0c00172

Disintegration of Biological Particles

China et al, 2016, https://pubs.acs.org/doi/10.1021/acs.est.6b02896

0.2

0.1

Area equivalent diameter (µm)

Environmental SEM experiment imaging particles in a hydration/dehydration cycle. Biological particles disintegrate and release smaller particles

(e)

(f)

Tomlin et al, 2020, https://dx.doi.org/10.1021/acsearthspacechem.0c00172

Solid Phase of Biological Particles

Biological particles are solid, plausibly IN active

Particle height is related to total carbon absorption (TCA) obtained from NEXAFS spectra

Tomlin et al, 2020, https://dx.doi.org/10.1021/acsearthspacechem.0c00172

ACE-ENA 2018 - Dry Intrusions Events

Troposphere oressure DN all starter. Cold conveyor belt Surface ••••• Warm PURDUE UNIVERSITY.

6000

4500 3000

Particle-Type Composition from CCSEM/EDX

- 6 samples from non-dry intrusion FT
- 10 samples from non-dry intrusion MBL

Tomlin et al, 2021, https://doi.org/10.5194/acp-21-18123-2021

8 samples from dry intrusion FT

14 samples from dry intrusion MBL

Particle Internal Mixing State from STXM/NEXAFS

DI particles are more diverse, both externally and internally

Tomlin et al, 2021, https://doi.org/10.5194/acp-21-18123-2021

Particle Organic Volume Fractions $\rightarrow \kappa$ values

Assessment of Particles Hygroscopicity (κ)

$\kappa-\mbox{Calculated vs}$ Measured

100

100

10

Tomlin et al, 2021, https://doi.org/10.5194/acp-21-18123-2021

Particle Mixing State Parameterization

→ Parameterization using Shannon entropy metrics

Riemer & West, 2013, https://doi.org/10.5194/acp-13-11423-2013

Tomlin et al. 2022. https://pubs.rsc.org/en/content/articlepdf/2022/ea/d2ea00037g

Particle Mixing State Parameterization

Inform Particle-resolved Models \leftrightarrow Parameterization using Shannon entropy metrics

Riemer et al, 2019, <u>https://doi.org/10.1029/2018RG000615</u>

Tomlin et al, 2022, https://pubs.rsc.org/en/content/articlepdf/2022/ea/d2ea00037g Riemer & West, 2013, https://doi.org/10.5194/acp-13-11423-2013

Ongoing Studies and Plans: SAIL

Parties from Tethered Balloon Sampling

May 2022 flights

- Size and Timeresolved Aerosol Collector (STAC)
- T, P, RH, sensors
- OPC, particle size distribution
- a microaethalometer, BC mass loading

Ongoing Studies and Plans: SAIL

• PM Deposits in Snow

 February 22, 2022 descending trajectory from Western Rockies to Phoenix, low altitude transport to SAIL

Ongoing Studies and Plans: SAIL

• PM Deposits in Snow

Planned: Molecular Characterization of BrC \rightarrow assessment of snow reflectivity

 February 22, 2022 descending trajectory from Western Rockies to Phoenix, low altitude transport to SAIL

Zhou et al EST 2022, 56, 4173-4186

References

J.M. Tomlin, et al Chemical Composition and Morphological Analysis of Atmospheric Particles from an Intensive Bonfire Burning Festival. *Environmental Science: Atmospheres*, 2, 616–633, (2022). https://doi.org/10.1039/D2EA00037G

Y. Zhou, et al. Molecular characterization of water-soluble brown carbon chromophores in seasonal snow from northern Xinjiang, China. *Environmental Science and Technology*, 56 (7), 4173-4186, (2022). doi: 10.1021/acs.est.1c07972

J.M. Tomlin, et al. Impact of Dry Intrusion Events on Composition and Mixing State of Particles During Winter ACE-ENA Study. *Atmospheric Chemistry and Physics*, 21, 18123–18146, (2021). doi: 10.5194/acp-21-18123-2021.

Y. Zhou, et al. Molecular Composition, Optical Properties, and Radiative Effects of Water-Soluble Organic Carbon in Snowpack Samples from Northern Xinjiang, China. *Atmospheric Chemistry and Physics*, 21, 8531–8555, (2021). doi: 10.5194/acp-21-8531-2021

J.M. Tomlin, et al. Chemical Imaging of Atmospheric Particles Collected from a Research Aircraft over Agricultural Fields. *ACS Earth and Space Chemistry*, 4, 2171–2184, (2020). doi: 10.1021/acsearthspacechem.0c00172

S. China, et al. Microanalysis of Primary Biological Particles Emitted from Model Grass Over its Lifecycle. *ACS Earth and Space Chemistry*, 4, 1895–1905, (2020). doi: 10.1021/acsearthspacechem.0c00144

M. Fraund, et al. Optical properties and composition of viscous organic particles found in the Southern Great Plains. *Atmospheric Chemistry and Physics*, 20, 11593–11606, (2020). doi: 10.5194/acp-20-11593-2020

S. China, et al. Rupturing Of Biological Spores As A Source Of Secondary Particles In Amazonia. *Environmental Science and Technology*, 50, 12179–12186, (2016). doi: 10.1021/acs.est.6b02896

