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Motivation and Objective

• Convection-permitting models (CPM) are the 
future of Earth System Models

• But CPMs have various dynamical and 
microphysical biases

• Deep convection initiation and growth under 
realistic environments are poorly understood, 
near-cloud environmental factors and key 
cloud structures are difficult to observe

• Goal: Better understand processes 
controlling deep convective cloud growth 
under a variety of realistic environmental 
conditions during CACTI through 
developing an observation-model 
integration framework, and ultimately
jointly improve model and observation 
capabilities

Varble et al. (2014)
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Approach: Convective Cell Tracking Database

• Develop a convective cell tracking database using 
CSAPR radar reflectivity (Feng et al. 2022 MWR): 
 ~6900 tracked convective cells 
 Cell time, location, duration, size, echo-top, merge/split
 Profiles of Ze, ZDR, KDP, rain rate, Dm, etc.
 Parallax corrected NASA Langley GOES-16 cloud product 

matched to tracked cells
 Environmental conditions at CI time based on INTERPSONDE

GOES-16 Satellite

PI Product Available

https://doi.org/10.1175/MWR-D-21-0237.1
https://doi.org/10.5439/1844991
https://doi.org/10.5439/1844991


Quantifying Environmental Controls of Deep 
Convection Initiation

• Convection initiation (CI) 
preferably occurs just east of the 
Sierras de Córdoba (SDC) ridge

• Largest and deepest convective 
cells are observed east of the 
SDC

• Cells initiating in more humid low-
level environments are wider 
above the boundary layer and 
more intense ⇒ wider initial 
updrafts

• Jim Marquis will present more 
analysis of CI ingredients next

Low-level Moisture Impact on CI Vertical Structure
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Feng et al. (2022) MWR
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Rapid Cell Area Growth Depends on Large Low-
level Moisture and Wind Shear

• Cells occurring in the greatest MUCAPE, 850 hPa humidity, and 0-6 km shear exhibit clearly faster 
growth compared to the environments with lowest values

• Growth rates in moderate environments are not always significantly different from lesser or greater 
environments

• Other factors may affect cell growth rates: synoptic and mesoscale circulations, low level moisture 
flux, cold pool-wind shear interactions, cell-cell interactions

Cell Area Growth Rate by MUCAPE

Slower Faster
Cell Area Growth Rate by 850 hPa Qv Cell Area Growth Rate by 0-6 km Shear

Slower Faster Slower Faster

Feng et al. (2022) MWR



Adapt Cell Tracking to LASSO Simulations

• We adapted PyFLEXTRKR to track 
convective cells in LASSO simulations at 
CPM and LES grid spacings
 Radar tracking: 𝚫𝚫x: 2.5 km & 500 m
 LASSO tracking: 

 Native 𝚫𝚫x: 2.5 km & 500 m
 Coarsen 𝚫𝚫x: 100 m ➞ 500 m

• Environmental conditions for each 
tracked cell are obtained at CI locations 
in LASSO

• A total of 8 LASSO simulation days 
are used for analysis 
 Helping LASSO to evaluate the 

simulations

LASSO 100 mLASSO 500 m

LASSO 2.5 kmCSAPR2 Radar



LASSO Captures Observed Peak CI Location 
over Mountain Ridgeline

• LASSO produces cells  
more frequently* over 
the mountain ridge than 
OBS

• Differences are 
reduced at LES scale
but not eliminated, 
suggesting other 
causes (e.g., large-
scale forcing, 
orographic circulations, 
microphysics)

LASSO 2.5 kmRadar 2.5 km

AMF Site

LASSO 500 m LASSO 100 mRadar 500 m

AMF Site

*CI frequencies: total 
number of CI at a given 
location divided by the 
total number of times.

AMF Site



LASSO Reproduces Important Observed 
Convective Cell Statistics

• Model cell lifetime agrees well with 
observations, except for larger 
proportion of short-lived cells

• LASSO captures relationship 
between wider and deeper cells, but 
has more frequent shallow cells than 
OBS

• Higher resolutions still produce more 
frequent narrow and shallow cells, 
but less frequent deep cells
 Maybe related to microphysics (e.g., 

forming ice too quickly)
 Partly related to radar interpolation 

artifacts at upper-levels
 Need further investigation

Overall good agreement, 
except larger proportion 
of short-lived cells

LASSO captures wider 
cells ⇔ deeper

More frequent narrow & 
shallow cells than OBS, 
opposite for deep cells 
at 500 m

100 m results similar to 
500m



Updraft Width Dependence on Relative Humidity

• Wide updrafts in 2.5 km runs are 
associated with drier mid-level 
RH than in 500 m runs, which 
may suggest updrafts in CPM 
are less sensitive to 
environmental humidity (i.e., 
weaker turbulent entrainment 
effects)

• More work is needed to 
disentangle other processes 
contributing to these differences

Wide cells in 
2.5 km have 
lower RH 
than 500 m

Cell Lifetime-Max Updraft Area at 5 km AMSL

*Narrow cells: ≤ 1/3 updraft area distribution; Wide cells: ≥ 2/3 updraft area distribution

More sensitive to 
mid-level RH (500 m)

Log10(Max Updraft Area at 5 km [km2])
(10 km2)(1 km2) (100 km2)(3 km2) (15 km2)

Wide (2.5 km)

Wide (500 m)

Narrow (2.5 km)

Narrow (500 m)



PyFLEXTRKR Software Package for 
Community Use

• PyFLEXTRKR (Python-based atmospheric feature 
tracking software package)

• Current capabilities:
 Tracking convective cells using radar reflectivity data 

[Feng et al. (2022) MWR]
 Tracking MCSs using satellite (Tb) data, or model 

outgoing longwave radiation (OLR) data, with optional 
collocated precipitation data to identify robust MCSs 
[Feng et al. (2021) JGR]

 Generic 2D objects defined by simple thresholds

• Works on observations and model outputs, 
optimized to run on large datasets, scalable 
parallelization

• Provides visualization scripts, Jupyter notebooks 
for statistical analysis

• Now available: 
https://github.com/FlexTRKR/PyFLEXTRKR

Convective Cell Tracking

MCS Tracking

Feng et al. (2022), submitted

https://doi.org/10.1175/MWR-D-21-0237.1
https://doi.org/10.1029/2020JD034202
https://github.com/FlexTRKR/PyFLEXTRKR


Summary and Future Work

• We developed a prototype observation-model 
integration framework based on Lagrangian
tracking of convective cell lifecycle
 CSAPR cell tracking database is available as PI data
 Adapted to LASSO simulations at CPM and LES scales

• On-going research on understanding convective 
cloud growth using LASSO simulations:
 LASSO reproduces important observed convective cell 

statistics
 Simulations have more frequent shallow, short-lived cells 

than radar observations, higher resolution reduces but 
does not eliminate such differences

 Under-resolved convective updrafts in CPM have muted 
response to mid-level RH compared to LES

• Future work will examine resolution dependance on 
entrainment effects

Jo & Lasher-Trapp (2022) JAS

Direct Calculation of Entrainment / 
Detrainment from Updrafts

Contact: Zhe Feng (zhe.feng@pnnl.gov)

https://doi.org/10.5439/1844991
mailto:zhe.feng@pnnl.gov
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