

Overview of CACTI datasets, ongoing research, and future opportunities

ASR

Atmospheric System Research

Adam Varble¹, Zhe Feng¹, James Marquis¹, Zhixiao Zhang², Paloma Borque¹, Joseph Hardin¹, and Peter Veals²

> ¹Pacific Northwest National Laboratory ²University of Utah

2022 ARM/ASR Joint User Facility and PI Meeting October 25, 2022

PNNL is operated by Battelle for the U.S. Department of Energy

Early stages of the 25 January 2019 storm that reached nearly 21 km ASL. Photo courtesy of Ramón Alberto Acuña (SMN).

Pacific Northwest

Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Logistics

First deployment of the CSAPR2 with over 50 ARM Mobile Facility (AMF) instruments between Oct 2018 and Apr 2019 in the Sierras de Córdoba range of central Argentina.

IOP coincident with the RELAMPAGO field campaign between 1 Nov and 15 Dec with 22 flights performed by the G-1 (8 Deep CI, 8 Cu, 3 microphysics, 3 clear air).

Amongst the most ARM data streams produced of any AMF campaign including comprehensive, calibrated scanning Ka-, X-, and C-band radar datasets.

https://www.arm.gov/research/campaigns/amf2018cacti

Varble, A. C., et al., 2021: Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment. BAMS, 102, E1597-E1620, doi:10.1175/BAMS-D-20-0030.1.

Varble, A. C., et al., 2021: Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment. BAMS, 102, E1597-E1620, doi:10.1175/BAMS-D-20-0030.1.

Nesbitt S. W., et al., 2021: A Storm Safari in Subtropical South America: Proyecto RELAMPAGO. BAMS, 102, E1621-E1644, doi:10.1175/BAMS-D-20-0029.1.

AMS special collection: https://journals.ametsoc.org/collection/RELAMPAGO-CACTI

Cloud and Precipitation Conditions

Shallow clouds were observed directly overhead on 191 of 212 days, 165 of which had liquid clouds lasting 30 minutes or longer, many of which produced drizzle.

About 160 deep convective systems passed directly over the site on 83 separate days with a wide range of depth and organization.

> Varble, A. C., et al., 2021, BAMS, doi:10.1175/BAMS-D-20-0030.1.

Aerosol and Aerosol-Cloud Interaction Observations

Varble, A. C., et al., 2021, *BAMS*, doi:10.1175/BAMS-D-20-0030.1.

INP-Precipitation Interactions (Testa, Hill, Demott, and coauthors)

Pacific

Northwest

Testa, B., et al., 2021: Ice nucleating particle connections to regional Argentinian land surface emissions and weather during the Cloud, Aerosol, and Complex Terrain Interactions experiment, J. Geophys. Res. Atmos., 126, doi:10.1029/2021JD035186.

Increase of warm temperature INPs

-5

Warm Cloud **Processes**

Pacific

Northwest

NATIONAL LABORATOR

condensation nuclei and turbulence in continental warm shallow clouds during CACTI. J. Geophys. Res. Atmos., 127, doi:10.1029/2022JD036864.

19

a

(b)

(C

d

e

16

17

20

21

LWP

3342 warm cloud objects, 2173 mixed cloud objects, 152 deep cloud objects merged with cold clouds

Borque, P., et al., 2022: Peak rain rate sensitivity to observed cloud

Time [LT]

Ebase(lwp)

18

CCN impact on warm cloud drizzle rate

during CACTI. J. Geophys. Res. Atmos., 127, doi:10.1029/2022JD036864.

Pacific

Northwest

Borque, P., et al., 2022: Peak rain rate sensitivity to observed cloud condensation nuclei and turbulence in continental warm shallow clouds

Shallow Cloud Research Opportunities

Pacific

Congestus Deepening Processes (Andrew Geiss, Rusen Öktem, David Romps)

Pacific

Northwest

- Location
- Width
- Depth

- Lifetime
- Ascent Rate

Deep Convection Initiation (CI)

Pacific Northwest

Deep Convection Initiation Processes

With frequent orographic clouds and favorable deep convective thermodynamic conditions, many deep convection initiation (CI) success and failure cases were observed.

Marquis J. N., et al., 2021: Low-level Mesoscale and Cloud-scale Interactions Promoting Deep Convective Initiation. *Mon. Wea. Rev.*, 149, 2473-2495, doi:10.1175/MWR-D-20-0391.1.

Nelson T. C., et al., 2021: Radiosonde Observations of Environments Supporting Deep Moist Convection Initiation during RELAMPAGO-CACTI. *Mon. Wea. Rev.*, 149, 289–309. doi:10.1175/MWR-D-20-0148.1.

Tracking Convective Cells for the Whole Campaign

Pacific

Northwest

FLEXTRKR was used to separate, track, and save properties of ~6,900 observed convective cells on 74 days, matching them to sounding-derived atmospheric conditions.

Feng, Z, et al., 2022: Deep Convection Initiation, Growth, and Environments in the Complex Terrain of Central Argentina during CACTI, Mon. Wea. Rev., 150, 1135-1155, doi:10.1175/MWR-D-21-0237.1.

Feng, Z., et al., 2023: PyFLEXTRKR: A Flexible Python Feature Tracking Software for Convective Cloud Analysis. GMD, submitted.

What conditions correlate with narrow cell Pacific Northwest deepening and precipitation intensification?

Simulated MCS Evaluation

Zhang, Z., et al., 2021: Growth of Mesoscale Convective Systems in Observation and a Seasonal Convection-Permitting Simulation over Argentina. Mon. Wea. Rev., 149, 3469-3490, doi:10.1175/MWR-D-20-0411.1.

10

Daily Time (UTC)

15

20

0.02

0

5

0

0

0.5 **Normalized Lifetime**

1

Simulated Convective Cell Evaluation

Zhang, Z., et al., 2022, to be submitted.

17

Aerosol Effects on Deep Convection

AOD2	x						
AOD1	0.73	x					
AC	0.17	0.07	x	A			
CN	0.03	-0.01	0.32	x			
CCN	0.26	0.15	0.92	0.21	x	· · · · ·	x
MLRH	0.0	-0.04	-0.06	-0.0	-0.06	x	2
SHR	0.02	0.03	-0.0	-0.0	-0.0	0.0	×
CAPE	0.41	0.23	0.11	0.07	0.15	-0.07	-0.
LNB	0.38	0.32	0.06	0.02	0.09	-0.1	-0.0
	AOD2	AOD1	AC	CN	CCN	MLRH	SH

-0.3

-0.5

Veals, P., et al., 2022: Indications of a decrease in the depth of deep convective cores with increasing aerosol concentration during the CACTI campaign. *J. Atmos. Sci.*, 79, doi:10.1175/JAS-D-21-0119.1.

-0.1

0.1

0.3

Processes Reflected in Detailed Hemispheric RHI Structures

Pacific

Northwest

NATIONAL LABORATOR

- A tremendous number of CACTI cloud, aerosol, radiation, and atmospheric state datastreams and products (228) from the AMF1, CSAPR2, and G-1 are now available with most on the ARM archive: https://www.arm.gov/research/campaigns/amf2018cacti
- A lot of work has been done and continues to be done to build extensive cloud databases from which statistical studies and case studies can be performed focusing on a range of environmental controls on cloud and precipitation evolution as well as cloud and precipitation effects on the environment.
 - This has resulted in several studies targeting improved understanding and modeling of aerosol-cloud interactions, warm drizzle, deep convection initiation, and deep convective upscale growth.
- There is a tremendous number of further opportunities to explore many datasets that have yet to be analyzed and to build on the foundation laid by the development of many tools and products, particularly related to the life cycles of clouds, aerosols, and their interactions.
 - Please contact me with questions or to discuss ideas (adam.varble@pnnl.gov)

Integrated Cloud, Land-Surface,& Aerosol System Study ICLASS

Thank you

Research was supported by DOE ASR via PNNL's ICLASS project and NSF. CACTI was supported by DOE ARM.

Contact: adam.varble@pnnl.gov

PNNL is operated by Battelle for the U.S. Department of Energy

Early stages of the 25 January 2019 storm that reached nearly 21 km ASL. Photo courtesy of Ramón Alberto Acuña (SMN).

0.4

CACTI **Observing Facilities** (AMF1, G-1, CSAPR2)

Varble, A. C., et al., 2021: Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment. BAMS, 102, E1597-E1620, doi:10.1175/BAMS-D-20-0030.1.

Surface-Based Measurements

	Ground-Based Instruments and Measurements
Cloud and Precipitation Measurements	Instrumentation
Cloud and Precipitation Kinematic and Microphysical Retrievals	C-band Scanning ARM Precipitation Radar, Ka/X-band Scanning ARM Cloud Radar, Ka-band ARM Zenith Radar, Rada Profiler
Heights of Cloud Bases/Tops, Sizes, and Vertical Winds	ARM Cloud Digital Cameras
Cloud Base Height	Ceilometer, Micropulse Lidar, Doppler lidar
Cloud Scene/Fraction	Total Sky Imager
Raindrop Size Distribution, Fall Speeds, and Rainfall	Parsivel Laser and 2D Video Disdrometers, Tipping and Weighing Bucket Rain Gauges, Optical Rain Gauge, Present Detector
Liquid Water Path	2-Channel, High-Frequency, and Profiling Microwave Radiometers
Atmospheric State Measurements	Instrumentation
Precipitable Water	2-Channel, High-Frequency, and Profiling Microwave Radiometers
Surface Pressure, Temperature, Humidity, Winds, and Visibility	Surface Meteorological Stations (4 sites)
Vertical Profiles of Temperature, Humidity, and Winds	Radiosondes (2 sites), Radar Wind Profiler, Profiling Microwave Radiometer, Atmospheric Emitted Radiation Interferon
Boundary Layer Winds and Turbulence	Doppler Lidar, Sodar
Surface Condition Measurements	Instrumentation
Surface Heat Fluxes and Energy Balance, CO ₂ Flux, Turbulence, and Soil Temperature and Moisture	Eddy Correlation Flux Measurement System, Surface Energy Balance System
Aerosol and Trace Gas Measurements	Instrumentation
Aerosol Backscatter Profile	Micropulse Lidar, Doppler Lidar, Ceilometer
Aerosol Optical Depth	Cimel Sun Photometer, Multifilter Rotating Shadowband Radiometer
Cloud Condensation Nuclei (CCN) Concentration	Dual Column CCN counter
Condensation Nuclei (CN) Concentration	Fine and Ultrafine Condensation Particle Counters
Ice Nucleating Particle (INP) Concentration	Filters processed in Colorado State University Ice Spectrometer
Aerosol Chemical Composition	Aerosol Chemistry Speciation Monitor, Single Particle Soot Photometer
Aerosol Scattering and Growth	Ambient and Variable Humidity Nephelometers
Aerosol Absorption	Particle Soot Absorption Photometer
Aerosol Size Distribution	Ultra-High Sensitivity Aerosol Spectrometer, Scanning Mobility Particle Sizer, Aerodynamic Particle Sizer
Trace Gas Concentrations	O ₃ , CO, N ₂ O, H ₂ O Monitoring Systems
Radiation Measurements	Instrumentation
Radiative Fluxes	Broadband Direct, Diffuse, and Total Downwelling Downwelling Radiation Radiometers, Broadband Upwelling Radiation Radiometers, Ground and Sky Infrared Thermometers, AERI, Narrow Field of View 2-Channel Zenith Radiometer, Hen and Zenith Shortwave Array Spectroradiometers, Multifilter Radiometer, Multifilter Rotating Shadowband Radiometer, C Sun Photometer, Surface Energy Balance System, 2-Channel, High-Frequency, and Profiling Microwave Radiometers

Ka-band ARM Zenith Radar, Radar Wind

es, Optical Rain Gauge, Present Weather

neric Emitted Radiation Interferometer

amic Particle Sizer

s, Broadband Upwelling Radiation Channel Zenith Radiometer, Hemispheric ating Shadowband Radiometer, Cimel

Time (UTC)	Situation
13:02–17:01 Nov 4	Deepening orographic cumulus
13:09–17:05 Nov 6	Deep convection initiation; likely warm rain
12:10–16:10 Nov 10	Deepening orographic cumulus prior to deep convection initiation
16:48–20:00 Nov 12	Elevated deep convection, low-level stable cumulus and stratus
14:00–18:00 Nov 14	Clear air aerosol sampling
13:05–16:00 Nov 15	Clear air aerosol sampling
14:05–18:00 Nov 16	Boundary layer and elevated orographic cumulus
12:18–16:30 Nov 17	Congestus along cold front; wind-blown dust; mountain wave
15:10–19:06 Nov 20	Orographic cumulus; strong inversion
18:22–20:27 Nov 21	Orographic congestus and deep convection initiation
14:31–18:11 Nov 22	Stratiform anvil sampling along radar north-south scans
16:17–20:25 Nov 24	Orographic cumulus line; strong inversion
15:51–19:07 Nov 25	Orographic cumulus line; potential decoupling from boundary lay
15:08–18:50 Nov 28	Orographic congestus and deep convection initiation
14:16–16:32 Nov 29	Orographic congestus and deep convection initiation
16:20–18:47 Dec 1	Elevated drizzle in orographic stratocumulus; possible ice
12:06–16:11 Dec 2	Elevated drizzle in widespread clouds; possible ice; gravity wave
16:03–20:09 Dec 3	Boundary layer coupled orographic cumulus; strong inversion
17:51–19:45 Dec 4	Deepening congestus and some deep convection initiation
12:04–15:28 Dec 5	Mid-level clouds; congestus and some deep convection initiation
15:01–19:01 Dec 7	Orographic cumulus; strengthening inversion
16:06–19:30 Dec 8	Clear air aerosol sampling
	Time (UTC) $13:02-17:01$ Nov 4 $13:09-17:05$ Nov 6 $12:10-16:10$ Nov 10 $16:48-20:00$ Nov 12 $14:00-18:00$ Nov 14 $13:05-16:00$ Nov 15 $14:05-18:00$ Nov 16 $12:18-16:30$ Nov 17 $15:10-19:06$ Nov 20 $18:22-20:27$ Nov 21 $14:31-18:11$ Nov 22 $16:17-20:25$ Nov 24 $15:51-19:07$ Nov 25 $15:08-18:50$ Nov 28 $14:16-16:32$ Nov 29 $16:20-18:47$ Dec 1 $12:06-16:11$ Dec 2 $16:03-20:09$ Dec 3 $17:51-19:01$ Dec 7 $16:06-19:30$ Dec 8

/er

es in cloud layer

G-1 Measurements

	Aircraft Instruments and Measurements
Positioning Measurements	Instrumentation
Position/Aircraft parameters	Aircraft Integrated Meteorological Measurement System-20, Global Positioning System (Miniature Integrated GPS/INS Tactical System), VectorNav-200 GPS/INS, Video Cam
Atmospheric State Measurements	Instrumentation
Pressure, Temperature, Humidity, Winds, Turbulence	Gust Probe, Rosemount 1221F2, Aircraft Integrated Meteorological Measurement Syst Hygrometer, GE-1011B Chilled Mirror Hygrometer, Licor LI-840A, Rosemount 1201F1
Aerosol and Trace Gas Measurements	Instrumentation
Aerosol Sampling	Aerosol Isokinetic Inlet, Counterflow Virtual Impactor (CVI) Inlet
Aerosol Optical Properties	Single Particle Soot Photometer, 3-wavelength Integrating Nephelometer, 3-wavelength Photometer, 3-wavelength Single Channel Tricolor Absorption Photometer
Aerosol Chemical Composition	Single Particle Mass Spectrometer (miniSPLAT)
Aerosol Size Distribution	Ultra-High Sensitivity Aerosol Spectrometer, Scanning Mobility Particle Sizer, Passive C Particle Counter Model CI-3100, Dual Polarized Cloud and Aerosol Spectrometer (CAS
CN Concentration	Fine (1 on Isokinetic Inlet and 1 on CVI Inlet) and Ultrafine CPCs
CCN Concentration	Dual-column CCN counter
INP Concentration	Filter Collections for Colorado State University Ice Spectrometer
Trace Gas Concentrations	N_2O , CO, O_3 , and SO ₂ Monitoring Systems
Cloud and Precipitation Measurements	Instrumentation
Hydrometeor Size Distribution	Fast Cloud Droplet Probe, 2-Dimensional Stereo Probe, High Volume Precipitation Sar Precipitation Spectrometer (CAPS; includes Cloud Imaging Probe, CAS, and Hotwire S
Hydrometeor Imagery	Cloud Particle Imager
Liquid Water Content	Particle Volume Monitor 100-A, Multi-Element Water Content Meter, Hotwire Sensor fro

n (GPS) DSM 232, C-MIGITS III nera P1344

tem-20, Tunable Diode Laser and E102AL

h Particle Soot Absorption

Cavity Aerosol Spectrometer, Optical S)

mpler 3, Cloud and Aerosol Sensor)

om CAPS

RELAMPAGO Hydrologic Sites Downstream of CACTI Pacific Domain Northwest NATIONAL LABORATORY

Nesbitt S. W., et al., 2021, BAMS, doi:10.1175/BAMS-D-20-0029.1.

M-Gaboto

Andino

garcarana Parque Sarmiento

Instal Locations Treamflow FinalInstal EOL EOL-FLUX

RAL

A RAL-MICRO

Environmental Conditions During CACTI

Varble, A. C., et al., 2021, BAMS, doi:10.1175/BAMS-D-20-0030.1.

Convective Environmental Condition Distributions and Diurnal Cycles

Varble, A. C., et al., 2021, BAMS, doi:10.1175/BAMS-D-20-0030.1.

Stratocumulus Drizzle Case

Wind shear layer lifts with cloud top during drizzle onset, and the cloud remains coupled with the boundary layer. CCN concentrations do not decrease during this time, indicating drizzle onset is controlled by the lifting mechanism.

Stratocumulus Drizzle Case

Wind shear layer remains constant and cloud depth does not increase during drizzle onset. The cloud decouples from the boundary layer during drizzle onset, indicating a potentially key role for lower CCN concentrations aloft.

Success vs. Failure Thermodynamic Variability

Dense sounding networks during **RELAMPAGO-mobile missions show** considerable low level thermodynamic, particularly moisture, variability that greatly impacts convective inhibition and the level of free convection.

Upper PBL to lower troposphere moisture changes rapidly in time prior to deep convection initiation.

Just before deep convection initiation, CAPE and CIN are similar for both success and fail cases.

Marquis J. N., et al., 2021, Mon. Wea. Rev., doi:10.1175/MWR-D-20-0391.1.

Dual-Doppler analyses and soundings highlight significantly different low level kinematic conditions on 29 Nov and 4 Dec.

Pacific

Northwest

29 Nov has a much shallower easterly upslope flow and regions of enhanced meridional-mean convergence indicating more robust mesoscale convergence that is also suggested by more widespread orographic congestus coverage.

Marquis J. N., et al., 2021, Mon. Wea. Rev., doi:10.1175/MWR-D-20-0391.1.

Success vs. Failure Updrafts

Maximum updraft widths on 29 Nov approach 5 km with some being coherent for more than 15-30 minutes and correlated with the most robust low level reflectivity areas downshear.

Maximum updraft widths on 4 Dec remain < 3 km and are similar to the scale of boundary layer thermals.

These results indicate that mesoscale convergence may promote wider updrafts that can overcome buoyancy dilution by entrainment aloft.

Marquis J. N., et al., 2021, Mon. Wea. Rev., doi:10.1175/MWR-D-20-0391.1.

Marquis et al. (2021)

Tracked Cell Upscale Growth

Increasing cell size east of the terrain is correlated with increasing radar echo top heights, and these increases occur immediately east of the highest terrain.

The example below shows how some cells grow upscale in area and/or depth over hours while others do not, which we are using to study determinants of these differences.

WRF narrow cell reflectivity correlations with Pacific Northwest ENDINAL LABORATORY

WRF reproduces observed correlations and can be mined for further information Northwest NATIONAL LABORATORY

Pacific

X (km)

36

WRF time-height changes at CI locations for low vs. high max dBZ cells Northwest

RH (and theta-e) increase between 3 and 5 km leading up to CI associated with both cooling and moistening

Pacific

High max reflectivity cells have the same patterns in time as low max reflectivity cells but accentuated

High max reflectivity cells have free tropospheric ascent 30-60 min prior to CI whereas low reflectivity cells have slight subsidence

WRF cell coverage prior to CI correlate with Pacific moistening Northwest

Average 4-km RH rotated to the 4-km wind direction increases over and downstream of the CI location as cells propagate through the area

Low max reflectivity cells have the same patterns but with lesser RH and cell coverage (not shown)

CI – 60 min CI – 30 min 20 20 20 10 10 10 Y (km) Y (km) Y (km) 0 0 -10 -10 -10 **Cell Movement** -20 -20 -20 0 X (km) -10 -20 -20 10 20 -10 Ó 10 20 X (km)

CI – 60 min

Y (km)

CI – 30 min

CI – 15 min

Diurnal cycles of narrow cell max reflectivity Pacific Northwest

More numerous cells are most common overnight but greater max reflectivity associated with more cells in the domain does not change diurnally. Thus, this signal is not related to diurnal processes.

Campaign-long 3-km WRF Performance

400

-55

-60

Pacific

Northwest

-60

-70

-65

Longitude (°)

r = 0.87

-55

-70

-65

Longitude (°)

r = 0.87

-60

-55

Zhang, Z., et al., 2021, Mon. Wea. Rev., doi:10.1175/MWR-D-20-0411.1.

-70

-65

Longitude (°)

r = 0.83

Radiosonde Statistics

Over 2700 soundings were launched, with many more during the IOP associated with RELAMPAGO missions.

Max CAPEs approached 8000 J kg⁻¹, max PW exceeded 60 mm, and 0-6 km bulk shear frequently surpassed 25 m s⁻¹.

Schumacher, R., et al., 2021: Convective-storm environments in subtropical South America from high-frequency soundings during RELAMPAGO-CACTI. Mon. Wea. Rev., 149, 1439-1458, doi:10.1175/MWR-D-20-0293.1.

Low Level Jets and Cold Pools

As expected, a number of soundings exhibited northerly low level jets, which decreased in strength as they approached the SDC range.

These LLJs varied significantly in altitude from 500 m to > 2000 m. These more elevated LLJs may occur more frequently in this region as compared to the Great Plains.

A number of soundings were also launched in cold pools, which varied greatly in depth and intensity, similar to what has been found for observations over the Great Plains.

Schumacher, R., et al., 2021, Mon. Wea. Rev., doi:10.1175/MWR-D-20-0293.1.

V-wind profile for northerly LLJ-2 at Villa de Maria del Rio Sec

V-wind profile for northerly LLJ-2 at Cordoba

Severe Weather

RELAMPAGO had many objectives related to observing and understanding high impact weather.

Environments favorable to supercells and significant hail were very common, and many supercells and hailstorms were observed (e.g., right), particularly in the immediate lee of the high terrain.

Significant tornado conditions were much rarer due to insufficient low level vertical wind shear and storm-relative helicity.

Nesbitt et al. (2020, submitted to BAMS)

Wind Retrievals and OT 10 November 2018 2012 UTC

(b)

31 959

W 64.25°W 64.2°W 64.15°W 64.1°W 64.05°W 64°W

Investigations are also ongoing into the extreme convection observed including this case on January 25, 2019.

Opportunities to Leverage Detailed HSRHI Scans

17

13

12

11

10

Ground [km]

Tracked cells are being linked with rapid scan GOES-16 data and routine hemispheric RHI scans (e.g., 30° azimuth to right) along each radial spoke in the PPI view below

40 60 [km] 80

Detailed Microphysical and Kinematic Evolution

Pacific Northwest

NATIONAL LABORATORY

-		17.8		Site: COR
-		15.6		Campaign: CACTI
		13.4		Radar: XSACR
_	1.4	11.1	10	lat: -32 1263°
	-	8.9	j'm	Lon: -64.7286 °
	-	6.7	V L	Alt: 1131 m
	-	4.5	cit	Course banks
	-	2.2	elo	Scan: hsrni
	-	0.0	oppler V	Range ring: 5 km
\square	-	-2.2		PRF: 2315 Hz Pulse width: 1.000 µs
t	-	-4.5		
t	-	-6.7	ã	minze @1km:-31.8 dB
ł	+	-8.9	ear	No. Samples: 384
	4	-11.1	ž	Nyquist velocity: 17.8
Н		-13.4		Scan speed: 6.0°/s
H		-15.6		ADAA
-		-17.8		ARIVI

nsrhi th: -0.0 ° ring: 5 km 315 Hz vidth: 1.000 µs @1km:-31.8 dBz bacing: 25 m mples: 384 velocity: 17.8 m/s beed: 6.0°/s

1		17.8		Site: COR
	-	15.6	l(s]	Campaign: CACTI
	-	13.4		Radar: XSACR
		11 1		Frequency: 9730 MHz
1		0.0		Lat: -32.1203
1		0.9	Ξ	LUN: -04.7200
ł	-	6.7	N	AIC: 1131 m
	-	4.5	U	Scan, borbi
I	-	2.2	r Velo	Azimuth: 90.0 °
1	-	0.0		Range ring: 5 km
1	-	-2.2	ole	PRF: 2315 Hz
	-	-4.5	lean Dopp	Pulse width: 1.000 µs minZe @1km:-31.8 dBz
		-6.7		
		0.1		gate spacing: 25 m
I		-0.9		Numist velocity, 17.9 m/s
۱		-11.1	2	Scap speed: 6.0°/s
1	-	-13.4		Scall speed. 0.0 /S
I		-15.6		ADRA
I		170		ARIVI

25

HSRHI Objects Connected to Cell Tracks

Northwest NATIONAL LABORATORY

Pacific

Our extensive database of HSRHI scans is being used to identify detailed HSRHI objects that are being tied to the PPItracked objects.

