GASS Diurnal Cycle of Precipitation (DCP) Project

Shaocheng Xie Lawrence Livermore National Laboratory

Co-Chairs: Hsia-Yen Ma (LLNL), Peter Bechtold (ECMWF), David Neelin (UCLA) SCM Lead: Shuaiqi Tang (LLNL, now at PNNL) GCM lead: Cheng Tao (LLNL)

http://portal.nersc.gov/project/capt/diurnal/

LLNL-PRES-841502

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Goals & Research Themes

Identify model deficiencies and/or missing physics to gain insights for further improving model capability in simulating diurnal precipitation

Nocturnal convection over land

- What is the role of convective memory (advection), elevated convection initiation, nighttime low-level jet, radiative cooling from cloud tops?
- Diurnal cycle of convection over ocean:
 - What is the role of the "direct radiation—convection interaction" (or lapse-rate) mechanism on diurnal cycle of convection over ocean?
 - What is the role of the "dynamic cloudy–clear differential radiation" mechanism?

Convection transition

• What controls the transition from shallow to deep convection? Free tropospheric humidity or boundary layer inhomogeneity?

Interaction between convection and water vapor

 Which processes are most essential and how can these be improved in weather and climate models?

Approach

A hierarchy modeling approach

- SCMs, CRMs, LESs, Regional Models, Convection Permitting models, and GCMs
- Provides a direct link to field data (e.g., ARM)

Case studies vs. statistical studies

- Major field campaigns
- Multi-year simulations
- Short-range hindcasts vs. climate simulations
 - The Transpose-AMIP or CAPT approach with models initialized with NWP analysis
 - Free AMIP type of runs
- Observational studies & modeling tests

A hierarchy of process models is the key to bridge the scale-gap

Model, Data, Experiments

- 11 SCMs (E3SM, E3SM-Trigger, E3SM-SILHS, SCAM5/6, SAM0-UNICON, SKIM, CMC, SMCPCP, ICON, TaiESM)
 - Driven by the ARM long-term continuous variational analysis forcing data (Xie et al. 2004)
 - SGP: 12 warm seasons (May Aug) (2004-2015);
 - MAO: two full years (2014-2015) (GoAmazon2014/15)
- 9 GCMs/2RGCMs (CAM6-CTL, CAM6-Trig, CMCGEM, ECMWF-IFS, E3SMv2, E3SMv2-CAPETrig, MPAS, TaiESM1, UMGA7, UMGA8, NUIST-WRF)
 - 8-year AMIP runs:
 - o full convection-environment interaction
 - circulation could be different from OBS
 - Multi-year 5-day Initialized hindcasts covering MC3E, PECAN, and GoAmazon:
 - o full convection-environment interaction
 - o circulation is close to OBS (due to initialization)
- Need participants and leads for CRM/LES studies

Status

- SCM component of the project is done. Results are documented in Tang et al. (2021), QJ, https://doi.org/10.1002/qj.4222.
- Actively working on GCM simulations. Expect a draft done in the next few months.
- Need more participations and leads for CRM/LES studies.
 - LLNL can provide necessary technical and data support
 - Need to identify science questions and connections to the SCM/GCM parts of the project
- Need more follow-up studies by individual groups with the data collected.

http://portal.nersc.gov/project/capt/diurnal/

What have we learned from SCM tests?

- Afternoon convection: surface driven
- Nocturnal convection: Propagation of MCS and elevated convection

Afternoon Precipitation

Surface-driven deep convection

- Peak Pr > 1mm/day
- Peak hours*: 1pm (11am) 8pm
- Peak Pr > 1.5 Pr outside Peak Hrs

- All the models trigger convection too early
 - Simulated precipitation peak time is more spread at MAO than at SGP

Convective precipitation
dominant

Nocturnal Precipitation

Propagation of MCSs and elevated convection

SGP

- Peak Pr > 1mm/day
- Peak hours: 00Z 07Z
- SCMs separated into two groups:
- G1: SKIM, CMC, TaiESM1, ICON (well captured)
- G2: EANv1, SCAM6, SAM0-UNICON, SMCPCP
- The nocturnal peak from G2 models largely contributed by large-scale precipitation controlled by the specified forcing data
- All G1 models consider mid-level convection while G2 models do not.

Impact of convective trigger and unified schemes on afternoon precip

Total Precip (mm/day) sgp Afternoon

- The dynamical constraint used in dCAPE-ULL → lead to a delayed peak for afternoon precip.
- Unified Sh and Deep Conv (UNICON and SILHS) delayed the convection onset time of afternoon events for both SGP & MAO – a better transition from shallow to deep convection during the day?
- CLUBB also leads to a delayed precip peak, but it does not delay the convection onset time.

Impact of convective trigger and unified schemes on nighttime precip

- The unrestricted air parcel launch level method used in dCAPE-ULL to capture mid-level convection \rightarrow lead to a well captured nocturnal peak for nighttime precip.
- SILHS also well captured the • nocturnal peak likely because it does not need specification of parcel launching level.
- **UNICON** unable to capture the ٠ nocturnal peak due to the lack of treatment of mid-level convection.
- CLUBB won't help for the nocturnal peak.

Connections to GCMs

CMCGEM – SCM vs GCM

 The nocturnal peak is also well captured by both SCM and GCM runs, likely due to its consideration of mid-level convection

Sensitivity to Model Resolutions

DOE Storm-Resolving Model (E3SM – SCREAM) Participate in DYAMOND

Caldwell et al. (2022) JAMES

The DOE Energy Exascale Earth System Model (E3SM) with 3km resolution

• The diurnal cycle is captured surprisingly well!

18 17

local time

Summary

- The errors in model simulated DCP ~ deficiencies in its deep convection parameterizations.
- For afternoon precip: need additional constraints in triggering and/or unified convection schemes.
 - Unified schemes better capture ShCu to DeepCu, but not necessarily for nocturnal precip, which is often related to elevated convection associated with the passage of MCS.
- The key to capture the nocturnal peak is to allow elevated convection to be captured ~ Including a mid-level convection scheme or launching air parcel above PBL
- Models start to show better skill in capturing DCP only when model resolution is increased to the storm-resolving scale.
- Connection between SCMs and GCMs needs to be better established. Physically improved schemes usually lead to better simulations seen in both modeling frameworks.
- Cold pool physics and convection memory should be also important for the diurnal cycle of precipitation, but they are not tested and examined in the current study

Thank you

E3SMv1 with the dCAPE&ULL trigger

Xie et al. (2019) JAMES

- dCAPE reduces the "too frequent, too weak" problem
- ULL is the key to capture nocturnal elevated convection
- A substantial improvement in the phase of the diurnal cycle
- The improvement is seen globally

Diurnal phase (color, hours) and magnitude (saturation, mm/day)

17**UL**

DYAMOND Models vs. AMIP LowRes Models vs AMIP HighRes Models

(e) Southern Great Plains (92-102W, 31-41N)

0/24hr

- DYAMOND: 9 models (dx ~ 4 km), a single 40-day simulation started from 1 August 2016 (boreal summer experiment phase)
- CMIP6/HighRes: 14 models (dx ≤ 50 km), 2001-2014 (only August), highresSSTpresent
- CMIP6/AMIP: 28 models (dx ≥ 100 km), 2001-2014 (only August)
- Observations: 2 satellite datasets: CMORPH, IMERG

Ma et al. (2022) GRL

Transition from Shallow to Deep Convection

6

9

12

Local Time (Hour)

15

18

21 24

UNICON well captures the rising of low clouds