https://doi.org/10.5194/amt-2022-246 Preprint. Discussion started: 1 September 2022 © Author(s) 2022. CC BY 4.0 License.

1

Quantitative Chemical Assay of Nanogram-Level PM Using Aerosol Mass Spectrometry: Characterization of Particles Collected from Uncrewed Atmospheric Measurement Platforms

Christopher R. Niedek^{1,2}, Fan Mei³, Maria A. Zawadowicz⁴, Zihua Zhu³, Beat Schmid³, Qi Zhang^{1,2*}

¹Department of Environmental Toxicology, University of California, 1 Shields Ave., Davis, California 95616, United States
²Agricultural and Environmental Chemistry Graduate Program, University of California, 1 Shields Ave., Davis, California 95616, United States
³Pacific Northwest National Laboratory, Richland, Washington 99352, United States
⁴Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973, United States

10 Correspondence to: Qi Zhang (dkwzhang@ucdavis.edu)

Avenues for aerosol sampling: pros and cons

- Ground-based
- Traditional aircraft
- Uncrewed aerial systems (UAS) and tethered balloon systems (TBS)
 - Complementary & versatile
 - $_{\odot}$ Payload restrictions, low air sampling flow rate ightarrow minuscule mass per sample
 - \circ E.g., ambient PM = 10 µg m⁻³, UAS sampler flow rate = 2.5 L min⁻¹

 \rightarrow 6.7 hours of flight time would be needed to gather 10 µg of PM (for traditional analysis methods)

Objective:

- 1. Develop a micronebulization Aerosol Mass Spectrometry (MN-AMS) technique that combines isotopically-labelled internal standardization, micronebulization, and aerosol mass spectrometry for quantitative analysis of nanogram-level of PM
- 2. Application of MN-AMS to the analysis of UAS collected PM samples

Micronebulization Aerosol Mass Spectrometry (MN-AMS)

- Extraction
 - \circ Ice bath sonication with methanol/H₂O

Spike

- ³⁴SO₄ as an internal standard
- Internal standardization corrects for the nonlinear behavior

Analytical recoveries are near 100 %

SGP samples: MN-AMS and ACSM comparison

- Co-located ACSM measurements allow for further method validation
- Bulk analysis of PM composition show similar results between the ACSM and MN-AMS

Quantification of SGP samples

- With isotopic internal standardization, the ambient PM mass concentration can be derived from the filter and impactor samples
- The offline MN-AMS measurements of ambient PM collected by UAS were within 20 % of those measured in real-time by the ACSM
- The time trend in ambient loadings measured by the ACSM is recaptured reasonably well by offline MN-AMS analysis

Chemical characteristics of SGP samples

- MN-AMS provides high-resolution mass spectra of OA
- Mass spectral correlation with the corresponding ACSM data (UMR) was reasonable (r² ≥0.5)
- Nitrogen-containing organics were likely present in the SGP samples
 - Organonitrates were previously suspected at the SGP site⁴
 - Nitrogen-containing organics were additionally confirmed by SIMS measurements

(4) Parworth, C.; Fast, J.; Mei, F.; Shippert, T.; Sivaraman, C.; Tilp, A.; Watson, T.; Zhang, Q. Long-Term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM). *Atmos. Environ.* **2015**, *106*, 43–55.

Chemical characteristics of SGP samples: July 22 vs. Nov. 21

• Potentially able to analyze UAS samples from relatively clean environment at sub-hourly resolution

Ability to capture temporal variations in concentration & composition allows for aerosol source apportionment.