

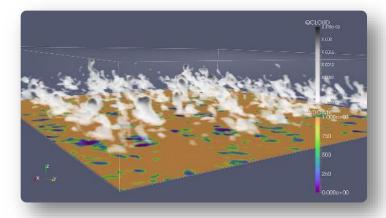
Uncrewed Aerial Systems for High-Resolution Modelers

William I. Gustafson Jr.

Pacific Northwest National Laboratory

AAF Breakout Session, 2022 Joint ARM/ASR Principal Investigator Meeting

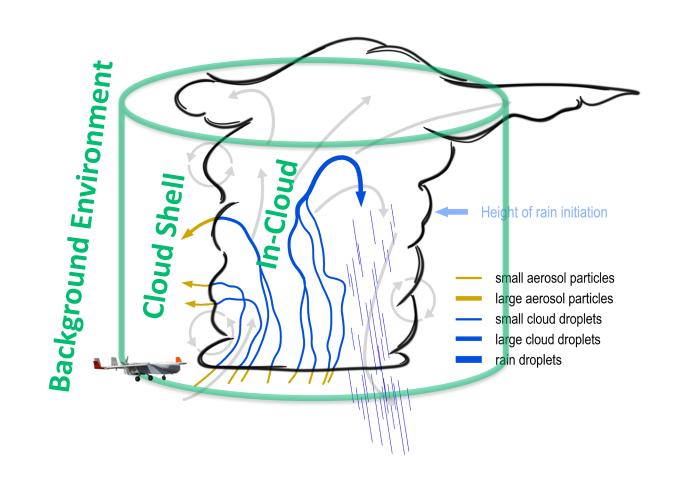
Context...



- ► LASSO-like, high-resolution modeling
 - Grid spacing on the order of 10–100 m
 - Domain width in range of 25–250 km
- ► Typical processes of interest
 - Boundary layer development and turbulence
 - Cloud lifecycle across a range of cloud types
 - Land/ocean-atmosphere interactions
 - Radiation (to a lesser extent)
 - Aerosol (maybe someday)

Real World

Model World



Quantification of cloud mixing and intra-cloud interactions

- Quantifying cloud environments as they evolve; essentially inside, around, and away from the cloud(s)
- ► Mixing in/out of cloud boundaries
 - How big of an area around the cloud is perturbed by detrained air?
 - How much "pure" background air makes it into the cloud from each side (top, bottom, upwind/downwind sides)?
 - How does detrained air differ with altitude and/or by cloud lifetime?
- ► Which clouds are impacted by their neighboring clouds?

What would be required

- ► Flight tracks (ideally concurrent aircraft using a drone swarm)
 - Vertical profiles in each cloud region (in-cloud, cloud shell, background environment)
 - Repeat over time throughout cloud lifecycle
 - Must track with the specific cloud as it advects
 - Issue: in-cloud and behind-cloud tracks would be tricky with line-of-sight requirement
 - Lawnmower or cloud-to-cloud pattern to quantify cloud population interdependencies
- Variables (high enough frequency to capture eddy spatial scales and to quantify fluxes)
 - Traditional meteorological variables: temperature, water vapor (or Td), 3-D winds, height/pressure
 - Cloud microphysics: droplet number, raindrop number, droplet and raindrop size distributions
 - Aerosol: CCN, particle size distribution, potentially composition

