Measurement of Sulfuric Acid Vapor Concentrations using a Condensation Particle Counter <u>Coty Jen</u>

Dom Casalnuovo (3rd yr), Darren Cheng (3rd yr)

Department of Chemical Engineering

Center for Atmospheric Particle Studies

Carnegie Mellon University

In collaboration with Dr. Chongai Kuang (BNL)

Lifecycle of a secondary atmospheric aerosol particle starts from gaseous emissions

New particle formation produces ~50% of global cloud condensation nuclei (CCN, 0.2% supersaturation) Fraction of CCN from Nucleation

Freshly formed particles observed at higher altitudes

Does sulfuric acid nucleate at higher altitudes? Where does sulfuric acid come from?

Growth and activation also depend on atmospheric sulfuric acid concentration

Measuring sulfuric acid requires a mass spectrometer

- Power intense
- Heavy
- Difficult to operate
- Expensive
- Factor of 2-3 uncertainty
- Poor spatial and temporal resolution measurements

GOAL: Develop a compact technique to measure atmospheric sulfuric acid

Leverage how sulfuric acid nucleates in the atmosphere to measure sulfuric acid

Sulfuric acid condensation particle counter (SA-CPC)

Sulfuric acid condensation particle counter (SA-CPC)

Good agreement between CIMS and SA-CPC

Minimal effects of relative humidity (RH)

Future work: vertically resolved measurements of sulfuric acid in Pittsburgh and ARM SGP

Dexheimer. Tethered Balloon System (TBS) Instrument Handbook. (2018)

Significant Findings

Use a 1-nm condensation particle counter coupled to a dimethylamine flow reactor to measure gaseous sulfuric acid

Acknowledging my Awesome Group

