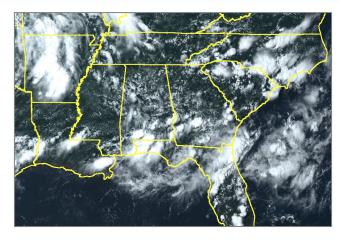
The 3rd ARM Mobile Facility (AMF3): Future Plans in the Southeast US

Site Science Team Leads (BNL): **Chongai Kuang**, Scott Giangrande, Shawn Serbin

Site Operations Team Leads (ANL): **Mike Ritsche**, Patty Campbell, Mark Spychala, Nicki Hickmon

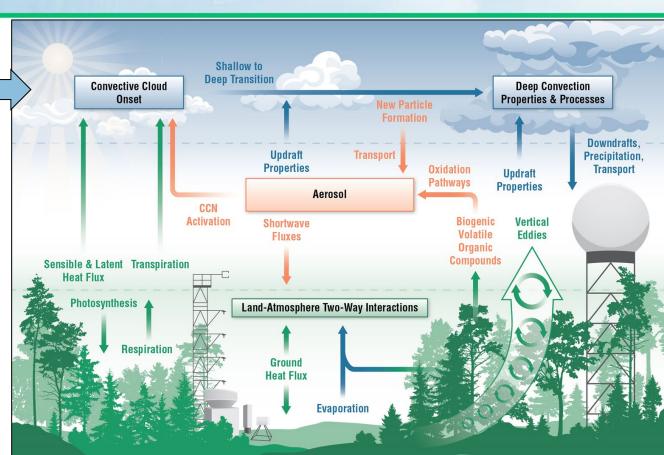


Relocation of the 3rd ARM Mobile Facility to the Southeast U.S.

- Motivators for going to the Southeast U.S.:
 - Abundant locally-forced shallow to deep convection
 - Large amount of vegetative-driven biogenic emissions
 - Strong local coupling of land surface with atmospheric processes
- Expected **5 year** deployment, operations beginning summer 2023.
- Joint ARM, ASR-funded project.
- Specifics on site location, configuration, and instrumentation to be determined in part through coordination between a DOE supported **Site Science Team** and the **Site Operations Team**.

Project Membership: Core Team

- Chongai Kuang: BNL, PI (aerosol)
- Scott Giangrande: BNL, co-PI (convection)
- Shawn Serbin: BNL, co-PI (land-atmosphere interactions)
- James Smith: University of California, Irvine
- Allison Steiner: University of Michigan
- Gregory Elsaesser: GISS, Columbia University/NASA
- John Peters: The Pennsylvania State University
- Mariko Oue: Stony Brook University, NY
- Thijs Heus: Cleveland State University
- Pierre Gentine: Columbia University

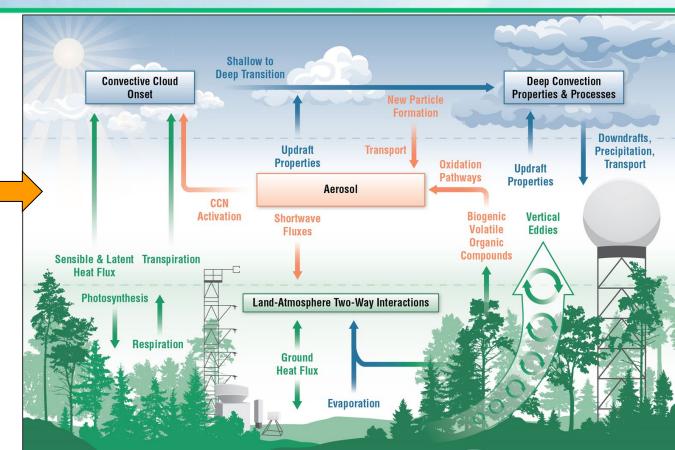


Convective Cloud Process Science Drivers

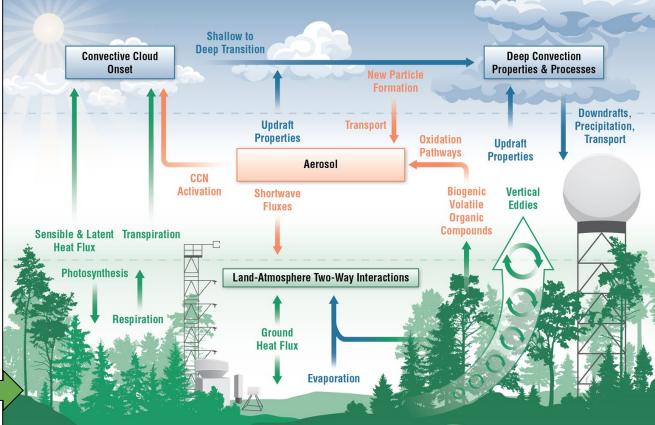
- Onset of Convective Clouds:
- Large-scale vs. meso-scale thermodynamic perturbations
- Processes that regulate shallow-to-deep convective transitions
- Role of moist thermals
- Convective Cloud Processes:
- Relationship between boundary layer and coverage of convection
- Nature of convective updrafts, including intensity/size
- Convective organization and stratiform precipitation

U.S. DEPARTMENT OF

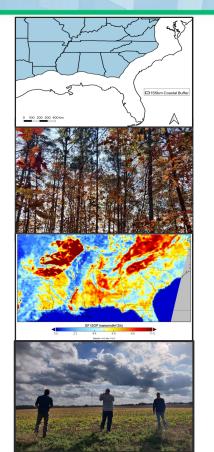
ARM


Aerosol Process Science Drivers

 Properties/processes that control the cloud condensation nuclei budget:


- New particle formation and transport
- Secondary organic aerosol
- Spatio-temporal variability in aerosol hygroscopicity
- Aerosol optical properties:
- Particle water uptake
- Biomass burning
- Brown carbon

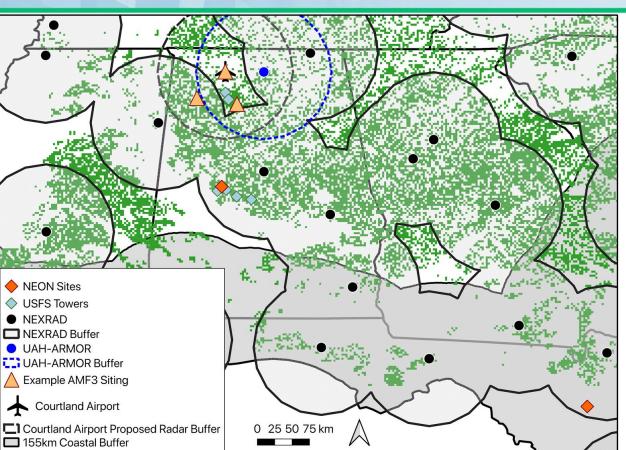
U.S. DEPARTMENT OF



- Impacts of surface heterogeneity on land-atmosphere coupling
- Land-surface biotic / abiotic controls on:
 - Fluxes, energy balance
 - Cloud processes and spatio-temporal patterns
 - Aerosol formation and regional variability
- Turbulence and boundary layer measurement & modeling
- Two-way interactions between plants and cloud / aerosol radiative impacts

Preferred Siting Criteria for Effective AMF3 Deployment in the Southeast U.S.

Avoid coastal regions and similar complexities


Representative terrain and forested locations

Representative air mass sampling

Frequent clouds, shallow to deep convection

GIS Spatial Analysis: Example Siting and Site Configuration

- Green regions are potentially suitable for cross-cutting science drivers
- Request for 3+ non-collinear supplemental sites
- Our preferred region: Northern Alabama
 - High frequency of deep convective storms
 - Proximity to many potential partner facilities
 - Suitable, representative terrain & forested regions
 - Range in anthropogenic / biogenic emissions

Alabama Siting Visits: Building Partnerships and Evaluating Facility Logistics

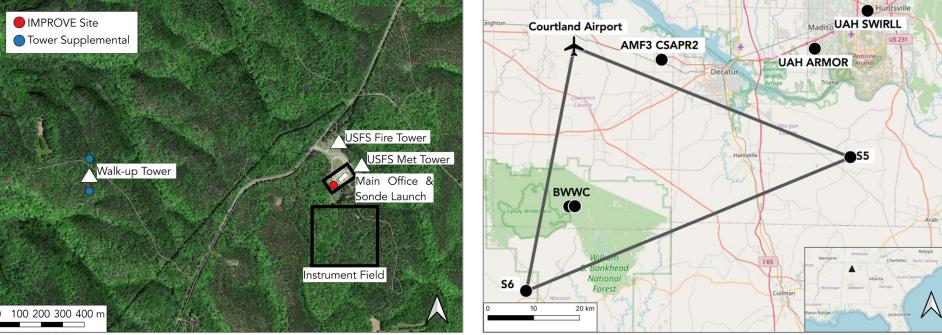
• <u>Timeline</u>:

- 3 visits in June, July, and November 2021
- 1 visit in August 2022
- 1 planned in January 2023: tower siting / tree removal

• <u>Activities</u>:

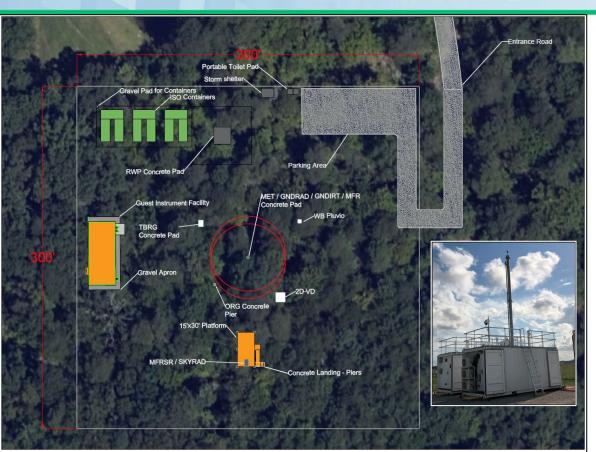
- Building local partnerships (e.g., US Forest Service, universities, measurement networks, and communities)
- Evaluating facility logistics (e.g., power, communications, sampling requirements)

ENERGY Siting (e.g., main site, radar, towers, supplemental sites)


Preferred Region: Northern Alabama - Main + Supplemental Sites

Planned Partner Facilities & ARM Supplemental

Sites (Phase 2 FY24)


Bankhead National Forest: Black Warrior Work Center (BWWC) - Main Site (Phase 1 FY23)

Phase 1, Main site: Planned Layout and Instrumentation

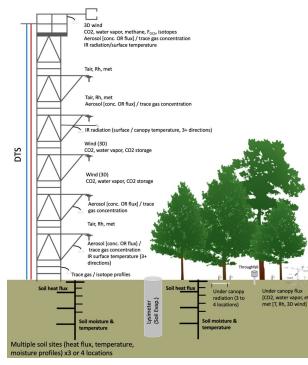
- Aerosol Observing System (AOS)
 - Water-uptake, chemical composition
 - Absorption, extinction, scattering
 - Concentration, size distribution
 - Trace gases
- Radiometry (upwelling/downwelling short/long-wave radiation)
- Aerosol Profile Retrievals
- Cloud Properties and Microphysics (Profiling Radar)
- Radiosondes
- Surface Carbon, Water, Energy Fluxes
- Soil Moisture and Temperature
- Surface Meteorology
- Thermodynamic Profiles

Phase 1, Main Tower Site: Planned Design & Configuration

Measurement Heights:

- Top of tower
- Above/Below Canopy
- 10 meter/4 meter
- Surface

• Planned Measurements:

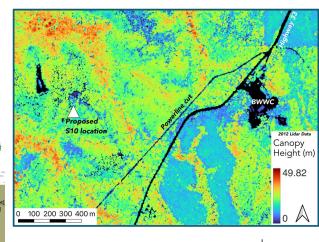

- 3D winds, T/RH, precipitation
- Greenhouse Gases
- Radiation: full-range, direct/diffuse, incident/reflected, profiles
- Fluxes: C, H2O, energy (vertical/ecosystem)

• Under Review / IOP Measurements:

- Aerosol flux ENG0004574
- Biological aerosol (WIBS/EMSL)
- Biogenic VOC concentration + flux
- AmeriFlux CO2 Flux & Storage System
- Distributed Temperature Sensing

<u>Concept</u>

Short/longwave radiation (downwelling/upwelling) Proximal sensing (canopy reflectance/albedo) IR radiation/surface temperature (point/image) Boundary layer height, cloud field characterization Precipitation (type, quantity)/droplet properties (above/below) Scintillometer Phenology / phenocamera(s) Net radiation

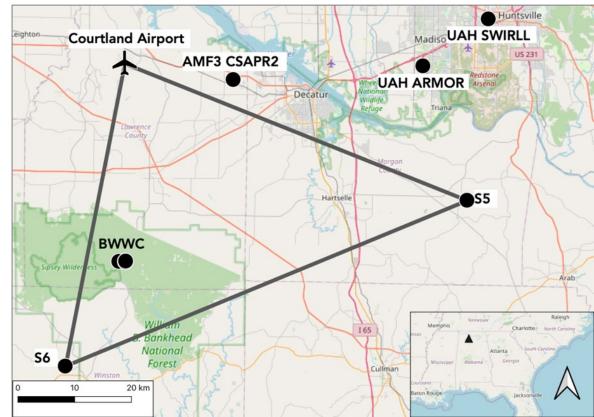


<u>Siting</u>

 mixed pine-oak forest, west of the BWWC

ARM

 determined via consideration of dominant winds, fetch, forest cover, and terrain



Phase 2, Aerial Platforms and Supplemental Sites: Planned Configuration and Measurements

• Supplemental Sites:

- 3 sites: Courtland Airport + 2 TBD
- boundary layer profiles (T, wind, water vapor, liquid water path)
- surface fluxes (atmosphere and soil)
- surface meteorology and radiometry
- supplemental flux towers
- **Partner Facilities:** University of Alabama, Huntsville (ARMOR radar and SWIRLL)
- Aerosol Sensor Node Network (in design - ENG0004533)
- Aerial Measurement Platforms (e.g., tethered balloon systems, uncrewed aerial systems)
- ARM Cloud/Precipitation Radar(s) (e.g., CSAPR2, Ka-XSACR)

 U.S. DEPARTMENT OF
 ENERGY

ARM

Aerosol Sensor Node Network - ENG0004533 ARM **Isoprene emission factor** E-NO2 (mol km⁻² hr⁻¹) (mol km-2 hr-1) **Example Design** CANFRA (%) 34.8 -0.45 150 0.4 80 34.6 -0.35 34.4 -60 0.3 BNF BNF BNF 100 0.25 34.2 -0.2 40 34 -0.15 50 20 0.1

• "Typical" global climate grid cell over Northern Alabama domain exhibits high aerosol variability due to heterogeneous surface controls on: aerosol sources (e.g., BVOCs, anthropogenic emissions), aerosol sinks (e.g., wet / dry deposition), and aerosol transformations (e.g., water up-take).

-87

0.05

-88

-87.5

-87

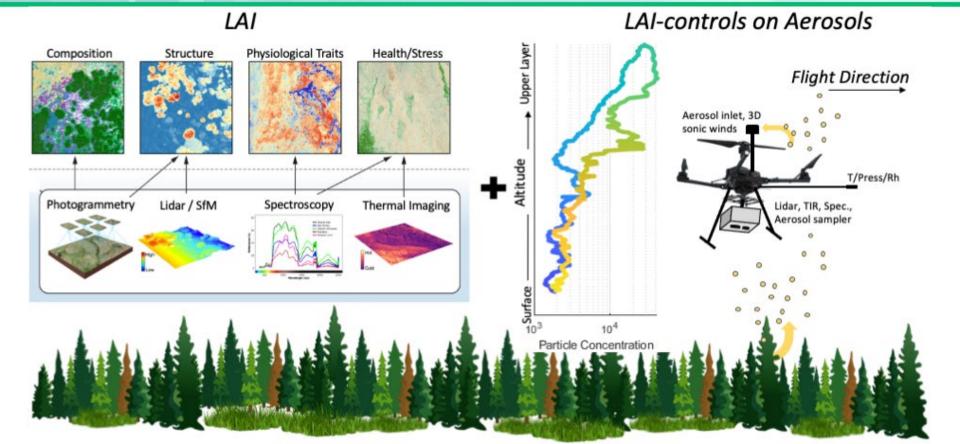
• Initially develop 2+ aerosol sensor nodes that meet measurement requirements (e.g., aerosol number, size, composition) and operational requirements (e.g., lower cost / complexity), targeting aerosol variability in AMF3 domain.

-88

-87.5

-87

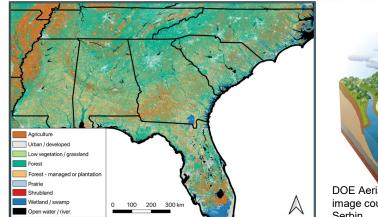
-88

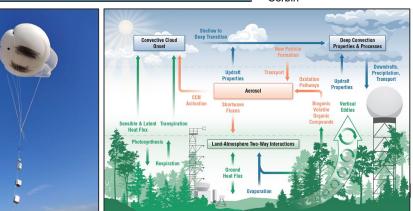

-87.5

33.8 -

33.6

analysis courtesy of Tamanna Subba


Novel Aerial Platforms for Coupled LAI Science ARM



AMF3 Southeast US: Goals and Opportunities

- Improve understanding of Southeast U.S. landatmosphere two-way interactions and surface controls on aerosol and convective processes.
- Explore environmental transitions: forest rural agricultural - urban.
- Upscale surface point/network, verticallyresolved, and remotely-sensed observations using novel datasets, statistical and process modeling approaches.
- Advance model-data integration of ARM and partner-agency observations.
- Test-bed for emerging measurement technologies (e.g., spatially-distributed sensing) and AI/ML applications for climate science (e.g., edge-enabled).

Engaging with our Site Science Team

- **Come to our Breakout Session!** "The 3rd ARM Mobile Facility in the Southeast United States: Current Plans for Science-Driven Facility Siting, Configuration, Instrumentation, and Outreach." **Wednesday, 2 4 pm**.
- We strive for a very active community outreach. This includes outreach to:
 - ASR, Environmental System Science
 - ARM and EMSL Research Community
 - Relevant multi-agency Southeast U.S. Field Campaigns
 - Southeast U.S. experts, partners, and measurement networks
- Slack channel 🚏 amf3seus.slack.com
- email list: <u>seusteam@arm.gov</u>
- webpage: <u>https://www.arm.gov/capabilities/observatories/amf/locations/bnf</u>

Deployment Webpage

