Effects of decoupling boundary layer on the change of phase partitioning in the mixed-phase stratiform clouds

Fan Yang¹, Mikhail Ovchinnikov², Damao Zhang¹, Edward Luke¹, Mariko Oue³, Dan Lubin⁴, Pavlos Kollias^{1,3}, Andrew Vogelmann¹

- 1 Brookhaven National Laboratory, Upton, New York, USA
- 2 Pacific Northwest National Laboratory, Richland, Washington, USA
- 3 School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- 4 Scripps Institution of Oceanography, University of California San Diego, California, USA

June 12, 2019

March 31, 2016, AWARE

Yang et al. (2019 ARM/ASR PI meeting)

phase partitioning in MPC

June 12, 2019 @ Rockville 2 / 15

Effect of decoupled PBL on phase partitioning

Yang et al. (2015) suggested that IWP in a decoupled field is larger than that in a coupled field with the same mixed-phase cloud thickness and ice nucleation rate¹.

1. Yang et al., JGR, 2015

Yang et al. (2019 ARM/ASR PI meeting)

phase partitioning in MPC

June 12, 2019 @ Rockville

3/15

Working hypothesis

Is the coupled-to-decoupled transition of the atmospheric boundary layer the **cause** or the **result** of the fast change of phase partitioning in the mixed-phase stratiform clouds?

Yang et al. (2019 ARM/ASR PI meeting)

Control run

This simulation is similar to the ISDAC¹ case.

1. Ovchinnikov et al., JAMES, 2014

Yang et al. (2019 ARM/ASR PI meeting)

phase partitioning in MPC

BROOKHAVEN NATIONAL LABORATORY June 12, 2019 @ Rockville 5 / 15

Ways to generate surface inversion

Conclusion I: Decoupled PBL has **minor** effect in *LWP* and *IWP*. For details, please come to see our poster **B2-99**.

Yang et al. (2019 ARM/ASR PI meeting)

Important effect of ice number concentration

Conclusion II: The "only" way that I can mimic the observation is considering both **the change of ice number concentration** (fast change of phase partitioning) and **land-atmosphere interaction** (surface inversion).

Lines in the figure represent different values of ice number concentration (L^{-1}) in the mixed-phase clouds.

Yang et al. (2019 ARM/ASR PI meeting)

phase partitioning in MPC

June 12, 2019 @ Rockville

NATIONA

7 / 15

Conclusion and discussion

- Changing ice number concentration significantly alter the LWP and IWP time evolution.
- Addition of surface flux/inversion reduces the intensity of BL turbulence (< w² >) and introduces **minor** quantitative changes in LWP and IWP.
- The coupled-to-decoupled transition of the atmospheric boundary layer is **unlikely** to be the main cause of the observed fast change of phase partitioning.

Please come to see our poster **B2-99**.

Yang et al. (2019 ARM/ASR PI meeting)

Backup Slides

Yang et al. (2019 ARM/ASR PI meeting)

Model setup

The simulation is similar to ISDAC¹ case with some modifications.

Model	:	System for Atmospheric Modeling ² (SAM 6.11.2)
Resolution	:	$50 \text{ m} \times 50 \text{ m} \times 10 \text{ m}$
Domain	:	3.2 km $ imes$ 3.2 km $ imes$ 1.5 km
Total Time	:	12 hours
Profiles	:	Sounding at 10:14 UTC
Radiation	:	longwave radiation from NCAR CAM3 model
Microphysics	:	Morrison (2009) two-moment μ physical scheme ³
Forcing	:	w_{ls}
Nudging	:	u, v, θ_l, q_t
Surface	:	no flux, MO+surface forcing, constant flux

Ovchinnikov et al., JAMES, 2014
SAM
Morrison et al., MWR, 2009
Yang et al. (2019 ARM/ASR PI meeting)

(1) Nudging-induced inversion layer

Lines in the figure represent different thicknesses of the nudged-inversion layers above the surface.

Yang et al. (2019 ARM/ASR PI meeting)

(2) F_{lh} -induced inversion layer

Lines in the figure represent different values of F_{lh} at the surface.

Yang et al. (2019 ARM/ASR PI meeting)

(3) T_s -induced inversion layer

Lines in the figure represent different values of $z_0 = 2^n \times 10^{-4}$ at the surface.

BROOKHAVEN NATIONAL LABORATORY June 12, 2019 @ Rockville 13 / 15

Yang et al. (2019 ARM/ASR PI meeting)

Effect of change of ice number concentration

Lines in the figure represent different values of ice number concentration (L^{-1}) in the mixed-phase clouds.

Yang et al. (2019 ARM/ASR PI meeting)

phase partitioning in MPC

June 12, 2019 @ Rockville

NATIONAL

ATORY

14/15

Important effect of ice number concentration

Conclusion II: The "only" way that I can mimic the observation is considering both **the change of ice number concentration** (fast change of phase partitioning) and **land-atmosphere interaction** (surface inversion).

Lines in the figure represent different values of ice number concentration (L^{-1}) in the mixed-phase clouds.

Yang et al. (2019 ARM/ASR PI meeting)

phase partitioning in MPC

NATIONAL LABORATOR June 12, 2019 @ Rockville 15 / 15