New Microphysical Insights from Analysis of CentimeterResolution Holographic Data during ACE-ENA

Neel Desai ${ }^{1 *}$, Yangang Liu ${ }^{1}$, Susanne Glienke ${ }^{2,3}$ and Raymond Shaw ${ }^{4}$

${ }^{1}$ Brookhaven National Laboratory, ${ }^{2}$ Johannes Gutenberg University, Mainz, Germany
${ }^{3}$ Max Planck Institute for Chemistry, Mainz, Germany, ${ }^{4}$ Michigan Technological University, Houghton, MI

HOLODEC (Holographic Detector for Clouds)

A joint development between Michigan Technological University, Mainz University, and NCAR

Mixing diagrams vs altitude

Cloud base

- X axis: Normalized droplet number concentration
- Y axis: Normalized mean volume diameter
- Many holograms show droplet growth $d^{3} / d_{o}^{3} \gg 1$ (condensation / collisions)

3 2

Takeaway
Homogeneous mixing near cloud base.

Progresses to Inhomogeneous mixing near middle and cloud top

Each altitude has 3 legs

- Parallel to the wind
- Turn

Variation at constant altitude

- Parallel leg: Homogenous mixing (HM)
- Turn: Homogeneous mixing (HM)
- Perpendicular leg: Inhomogeneous mixing (IM)
- P2 did not show the same behavior

Takeaway

Averaging over a single altitude may not show what is going on at smaller scales

Summary

- HOLODEC allows centimeter-scale cloud measurements.
- Cloud base shows homogenous mixing while middle and cloud top show inhomogeneous mixing.

- Averaging over a single
altitude may not show what
is going on at smaller scales
- Averaging over a single
altitude may not show what
is going on at smaller scales
- Averaging over a single
altitude may not show what
is going on at smaller scales

Thank you!

80
Z (mm)

