New Microphysical Insights from Analysis of Centimeter-Resolution Holographic Data during ACE-ENA

Neel Desai^{1*}, Yangang Liu¹, Susanne Glienke^{2,3} and Raymond Shaw⁴

¹ Brookhaven National Laboratory, ² Johannes Gutenberg University, Mainz, Germany ³ Max Planck Institute for Chemistry, Mainz, Germany, ⁴ Michigan Technological University, Houghton, MI

211, 277-52.7541W EPSGI4225 BROOKHAVEN SCIENCE ASSOCIATES

HOLODEC (Holographic Detector for Clouds)

A joint development between Michigan Technological University, Mainz University, and NCAR

Comparison between

- Cloud passes on the same day
- Cloud passes at different altitudes (segments)

Mixing diagrams vs altitude

- X axis: Normalized droplet number concentration
- Y axis: Normalized mean volume diameter
- Many holograms show droplet growth $d^3/d_o^3 >> 1$ (condensation / collisions)

Takeaway Homogeneous mixing near cloud base. Progresses to Inhomogeneous mixing near middle and cloud top

 d^{3/d_0^3}

0.6

0.5

0.4

0.3

 $\sigma_{\rm r}/1$

oud base

Each altitude has 3 legs

• Parallel to the wind

• Turn

• Perpendicular to the wind

Variation at constant altitude

- Parallel leg: Homogenous mixing (HM)
- Turn: Homogeneous mixing (HM)
- Perpendicular leg: Inhomogeneous mixing (IM)
- P2 did not show the same behavior

Averaging over a single altitude may not show what is going on at smaller scales

Takeaway

0.6

Parallel

Summary

• HOLODEC allows centimeter-scale cloud measurements.

 Cloud base shows homogenous mixing while middle and cloud top show inhomogeneous mixing.

