Composition and Chemical Identity of BrC

Peng Lin,¹ Lauren Fleming,² Nir Bluvshtein,³ Yinon Rudich,³ Sergey Nizkorodov,² Julia Laskin,¹ Alexander Laskin¹

¹ Purdue University, West Lafayette, IN
² Department of Chemistry, University of California, Irvine, CA
³Weizmann Institute of Science, Rehovot, Israel

PURDUE UCIRVINE UCINE עכון ויצמן למדע WEIZMANN INSTITUTE OF SCIENCE

ASR 2019 program meeting

LC-PDA-MS Analysis

• Spectrum and formula for separated BrC fractions

LC-PDA-MS Analysis

LC-PDA-MS Analysis

Multi-Modal Ionization

Polar compounds: organo-sulfates, organonitrates, carboxylic acids, etc. Non- and less-polar compounds: PAH, N- and O-heterocyclic species, ketones, alcohols.

5

Separation ⇒ Analysis of BrC Chromophores

 Detection of BrC chromophores in complex biomass burning samples collected in test burns

Lin et al, 2016, ES&T

<u>Common</u> and <u>Source-specific</u> Chromophores

Retention Time (min)

<u>Common</u> and <u>Source-specific</u> Chromophores

Characteristic BrC Chromophores

Comparing BrC samples

- BrC chromophores are source-specific..!
- >50% of MAC attributed to individual BrC chromophores
- Unresolved fractions: weak chromophores, charge-transfer complexes

• Different chromophores have different resistance to photolysis

Fleming et al, 2019, ACP Discussion

Imidazole based chromophores are unstable *Effective lifetime: minutes-hours*

Lee et al, EST 2014

• Nitro-PAH chromophores are stable *Effective lifetime: 1-2 days*

Lee et al, EST 2014

• Dinitro-phenols show dual effect:

Effect of pH on UV-Vis spectra of BrC

pH ≤ **3**

pH ≥ 6

Deprotonated (anionic) forms

100-

80-

60-

40-

20

0-

300

500

400

wavelength (nm)

Relative Absorbance

Effect of pH on UV-Vis spectra of BrC

• Light absorption by BrC depends strongly on pH

 BBOA dominated by nitroaromatics

Summary

- > Diverse BrC chromophores define ~50% of MAC
- > Common & Source-specific BrC chromophores
- Nitro-aromatics and PAH derivatives dominate absorption spectra of BBOA
- > Lifetimes vary for different BrC chromophores
- > Aerosol acidity affects absorption by BrC

Summary

- > Diverse BrC chromophores define ~50% of MAC
- > Common & Source-specific BrC chromophores
- Nitro-aromatics and PAH derivatives dominate absorption spectra of BBOA
- > Lifetimes vary for different BrC chromophores
- > Aerosol acidity affects absorption by BrC

<u>Outlook</u>

- Assessment of common vs source-specific BrC, their formation and evolution mechanisms
- Quantitative detection of strong chromophores
- Effects of particle internal composition on BrC properties