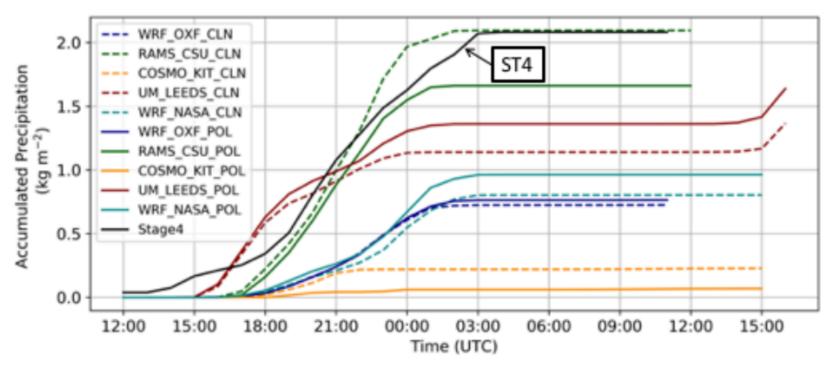
TRacking Aerosol Convection interactions ExpeRiment (TRACER) – An upcoming ARM field campaign

Michael P. Jensen, PI Brookhaven National Laboratory

TRACER Breakout Session
Joint ASR PI, ARM Facility User Meeting
Bethesda, Maryland
12 June 2019

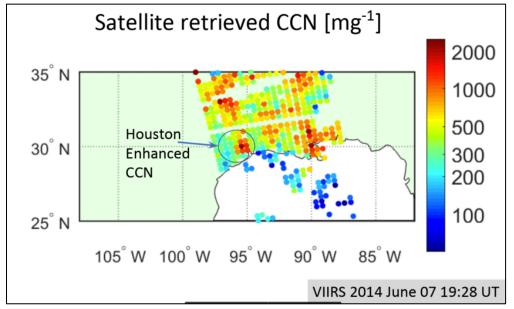
CLIMATE RESEARCH FACILITY

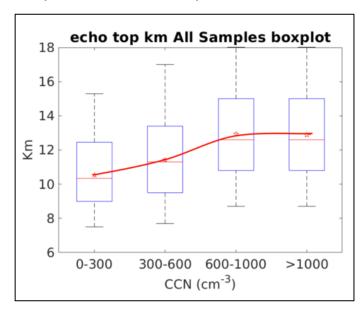

Aerosol, Clouds, Precipitation and Climate WG

(http://acpcinitiative.org/index.html)
(IGBP, WCRP, iLEAPS, IGAC, GEWEX)

- Deep Convective Cloud Group Roadmap
 - Builds on Multi-model Case Study Simulations (Houston, 19-20 June 2013)
 - Builds on ACPC observational analyses (NEXRAD, LMA, satellite)
 - Prevalence of isolated deep convection, localized aerosol sources
 - Need for targeted, high-resolution, detailed observations

Aerosol-Convection Interactions: ACPC Pilot Study (I)




Courtesy van den Heever

- Comparison of accumulated precipitation
- For clean (dashed) and polluted (solid)
- Simulations for 19 June 2013 Houston, TX
- ST4 (black) is from NEXRAD observations
- Variability in microphysical representation among models
- Aerosol impact has different signs in different models

Aerosol-Convection Interactions: ACPC Pilot Study (2)

Observations of possible impacts of CN vs. CCN on cloud invigoration and electrification in the Houston area (Hu, Rosenfeld)

Observations include:

- satellite retrieved CCN concentration (Rosenfeld et al. 2014 JGR)
- radar tracked cell characteristics
- Lightning mapping array

Conclusions

- Echo-top height increases with CCN (between 600-1000 cm⁻³)
- Lightning flash count increases with CCN (once convection is initiated)

TRacking Aerosol Convection Interactions Experiment (TRACER)

- Houston, TX region
- April 15th, 2021 April 15th, 2022
- June Ist September 30th, 2021 [IOP]

ARM assets (so far)

- Ist ARM Mobile Facility
- 2nd generation C-band Scanning ARM Precip. Radar
- Additional site with aerosol, cloud and atmospheric state measurements

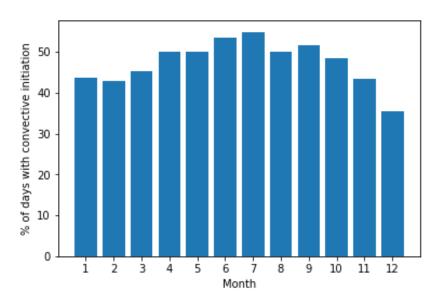
TRACER science questions (I)

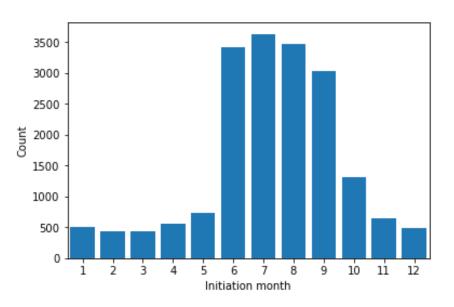
- I. Convective Cloud Lifecycle Kinematic and Microphysical Properties
- Characteristics of convective updrafts (size, depth, precipitation properties)
- How are these characteristics influenced by updraft strength?
- Where are cloud/rain/show/graupel/hail particles generated?
- How do these particles impact up/downdraft properties?
- How well are these processes and properties represented in models?

TRACER science questions (2)

2. Meteorological Controls on Convective Lifecycle

- How do pre-convective conditions control initiation, location and intensity of convective cells?
- How do environmental conditions influence storm properties?
- Impact of urban heat island and local circulations on convective properties.
- How does precipitation and local circulations modulate aerosol variability and aerosol-convection interactions?


TRACER science questions (3)


3. Aerosol - Deep Convection Interactions

- How do aerosols and cloud properties vary across Houston region? How do aerosols co-vary with meteorology.
- Which deep convective processes are most influenced by aerosols (e.g. cold or warm phase)?
- How do aerosols affect the height of and type (liquid or ice) of precipitation initiation?
- How are aerosol-deep convection interactions best represented in global and regional models?

Why Houston? Convective Cloud Climatology

- 4 years of Houston/Galveston NEXRAD (KGHX) observations
- Convective cell identification and tracking (Collis, Jackson ANL)

- (left) Percent of days/month where convection was observed
- Convection observed ~40-50% of days through entire year
- (right) total number of convective cells in NEXRAD domain
- Peak occurrence of convection occurs June-Sept (IOP)

TRACER – ARM Facility Siting Considerations

- AMFI in polluted region
- ANC site to SW of Houston in "clean" air
- C-SAPR
 - Sample over both sites
 - Consider beam blockage and frequency allocation
 - 20-40 km distance from both AMFI and ANC
- Leverage existing, historical measurement sites

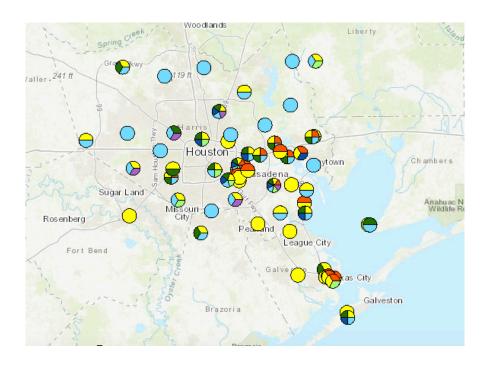
TRACER – ARM Facilities (I)

- First ARM Mobile Facility (AMFI)
 - Deployed for entire campaign [04/21-04/22]
 - Cloud (Scanning [Ka/X] and VP) cloud radar, lidar, wind profiler, TSI
 - Aerosol CCN, CPC, UHSAS, SMPS, etc...
 - Atmospheric State MWR, AERI, D. lidar, Sfc. Met, Sondes
 - Precipitation (Parsivel, video) disdrometer, rain gauge

TRACER – ARM Facilities (2)

2nd generation C-band Scanning ARM Precipitation Radar (CSAPR2)

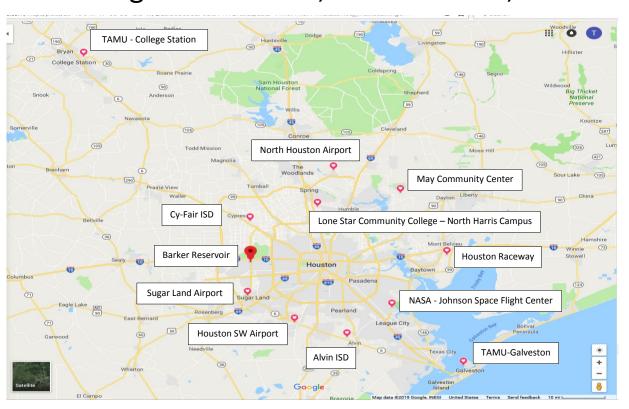
- Provides polarimetric observations of convective clouds
- Implement focused-scanning cell tracking during IOP period
- Focus on evolution of core microphysical properties
- Baseline operational mode outside of IOP


TRACER – ARM Facilities (3)

- Ancillary ARM site
 - Deployment during IOP (June- September) period
 - Located in 'unpolluted' region
 - CCN Counter
 - Condensation Particle Counters
 - Scanning Mobility Particle Sizer (SMPS)
 - Radiosonde profiling (4-7 x per day)
 - Surface Meteorology
 - Microwave Radiometer
 - Disdrometer, Rain gauge

TRACER – Leveraging Existing Observations (I)

- Texas Commission on Environmental Quality (TCEQ)
 - Surface Meteorology Network
 - Trace Gas, PM2.5 measurements
 - 75 sites within Houston Metro-area


tceq.texas.gov

TRACER – Leveraging Existing Observations (2)

- Houston Lightning Mapping Array
 - Operated by Texas A & M (PI: Tim Logan)
 - 4D quantification of lightning discharge
 - Charge distribution, flash location, flash rate

TRACER – What happens during the IOP?

Ancillary site

Remote forecasting of convective (40) days (Follow example of RACORO, SPARTICUS, ACE-ENA)

Cell-tracking, focused scanning of C-SAPR2 (Follow CASA model)

Sounding schedule – More frequent soundings, every 1.5 hours between 1200 and 1800 LT

TRACER - Build it and they will come!

Evolving Interagency and International Partnerships (I)

- UH Wind Profiler and RASS (Flynn)
- NSF Facility Request (Kollias, Kumjian)
 - Mobile C-band, DOW-6, DOW-7, 2 mobile sounding units
 - 10 July 30 August
- NSF Science Proposal (Encouraged by NSF PMs, Kollias et al.)
 - SBU dual-pol PA X-band, profilng radar/lidar (Kollias, Kumjian)
 - Lightning Mapping Array (Logan, Bruning)
 - Modelling (van den Heever, Lebo)
 - Small UAV (van den Heever, Kollias)
- ARM IOPTRACER-Carbonaceous Aerosol Thrust (Cappa, Dubey)
 - 2 CAPS-SSA
 - Photo-acoustic spectrometer (CRD-PAS)
 - Single Particle Soot Photometer (SP2)
 - 2 SP-AMS
 - Scaning Electrical Mobility Sizer

TRACER - Build it and they will come!

Evolving Interagency and International Partnerships (2)

- NSF Urban uTRACER (Gonzalez, Bornstein)
 - 2 flux towers, scintillometer
 - Deployable Raman lidar
 - Extended surface meteorology network
- NASA GPM GV (Petersen)
 - Disdrometer network, N-POL radar
- Germany remote sensing (Quaas)
- NSF MSRI -SAGE Edge computing, software defined device (Beckman, Collis, Bruning, Chandrasekar)
 - Pan-tilt zoom camera, PM sensors, scanning MPL

TRACER – Measurement Gaps

Field deployments always involve a tradeoff between:

- Science
- Logistics
- Funding

Exploring options to improve....

- Thermodynamic Profiling
- Aerosol profiling (lidars)
- Surface aerosol network
- Urban impacts on convection and precipitation
- Coastal impacts on convection and precipitation

TRACER – Timeline

May 2018 TRACER proposal submitted to ARM

Oct. 2018 Notice of Selection by ARM

Jan. 2019 Introductory Meeting with ARM

Apr. 2019 ACPC Workshop

June 2019 ARM/ASR Meeting

Aug. 2019 Presentation for inter-agency U. S. program managers

Jan. 2020 Site visits in Houston-area

April 2020 TRACER meeting/ACPC workshop

Jun. 2020 Forecasting Exercise

Apr. 2021 Campaign Start

Jun. 2021 IOP Start

Jan. 2022 AMS Annual meeting in Houston, TX

Sep. 2021 IOP End

Apr. 2022 Campaign End