Cloud Processing of Biomass Burning Plumes Drives Black Carbon to Center Stage

A. J. Sedlacek III & E. R. Lewis

Brookhaven National Laboratory

Probing rBC Mixing State

Wildfires offer a <u>unique</u> set of <u>conditions</u> that favor a variety of rBC-containing particle morphologies.

- rBC POA coagulation
- condensation of organic material on rBC

Today's discussion: Assume an idealized "core-shell" morphology

Next we probe the *potential* microphysical and optical implications of the derived rBC mixing state.

Detection of refractory black carbon (rBC) using laser-induced incandescence

Schematic from Schwarz et al., 2008

Use scattering and incandescence signals from individual rBC containing particles to probe rBC mixing state (i.e., coating thickness distribution as a function of rBC core diameter)

Distribution of rBC-containing particles

Classification of "total" particle

diameter and core diameter using valid scattering & incandescence signals

Use scattering and incandescence signals from individual rBC containing particles to probe rBC mixing state (i.e., coating thickness distribution as a function of rBC core diameter)

Subset of particles that

Distribution of rBC-containing particles

rBC diameter

Classification of "total" particle diameter and core diameter using valid scattering & incandescence signals rBC diameter

Use scattering and incandescence signals from individual rBC containing particles to probe rBC mixing state (i.e., coating thickness distribution as a function of rBC core diameter)

Distribution of rBC-containing particles

ication of "total" r

Classification of "total" particle diameter and core diameter using valid scattering & incandescence signals

Use scattering and incandescence signals from individual rBC containing particles to probe rBC mixing state (i.e., coating thickness distribution as a function of rBC core diameter)

Subset of particles that

Distribution of rBC-containing particles

rBC diameter

Classification of "total" particle diameter and core diameter using valid scattering & incandescence signals

rBC Particle Mixing States from LASIC & ORACLES

What drives the observed changes in mixing state and the SSA behavior?

rBC Particles are Thickly-Coated Nearest the African Coast

1) BC-coated particle is in core-shell configuration.

Assumption supported by large coating thicknesses.

Thickly-coated rBC particles in Near Source

Near source rBC mixing suggests negligible coating loss rBC particles from origin to P3 sampling point.

Quantifying rBC Mixing State

To better quantify the rBC-containing particle mixing state, only a subset of coating thicknesses are used so as to avoid detection limit issues discussed earlier.

Variability in Derived rBC Coating Thicknesses

- Except for near source transect, all ISO inlet gives coating thicknesses < 40 nm for rBC dia=100 nm
- CVI inlet data spans the range from most thickly-coated particles to that observed in ISO inlet
- rBC particles analyzed from LASIC (Ascension island) exhibit the thinnest coatings

Cloud processing leaves behind only residual particles (i.e., smaller total diameter)

Reconstructing Coated Core Mass Distribution

Coated particles experienced the same vapor-pressure history; thus, a given (coat, D_{BC}) determines coating for any D_{BC} .

Assumption supported by:

1) constant VP history line near max contours

2) steepness of contour lines

3) agreement of calculating mass fraction (MF_{OA}) in region where SP2 determines both coat and D_{BC} : 0.93 by integration, 0.89 by constant VP line

Activation of Coated rBC Cores

Activation: Kohler for core-shell (depends mainly on D_{tot})

- $\kappa = 0.15$ (typical for organics)
- $s_{crit} = 0.1\%$ (insensitive, coupled to κ)

Green symbols from differing flights

rBC Particle Mixing States from LASIC & ORACLES

What drives the observed changes in mixing state and the SSA behavior? Activation and/or cloud processing

How Might Activation Promote Coating Loss

• Wet deposition through precipitation

• Aqueous phase chemistry (molecular fragmentation \rightarrow higher volatility species)

Comparison of Model and Measurement of BB SSA

• rBC: RI=1.8 – 0.8**i*; BrC: RI=1.5-0.01**i* (imaginary part restricted by initial SSA ~0.9)

[§]Dobracki 2019 private communication; *Dobracki et al., AMS 2019; [‡]Aiken et al., DOE-ASR Sci. Team Mtg, 2018

ż

DBC/nm

5 6

8

100

ż

How Much OA is Bound with rBC?

Take Home Messages

- BC from African biomass burns is thickly-coated in the near source and thinly-coated in the far field. (figs 1/3)
- SSA *decreases* from near source to far source. (figs 1/3)
- Thickly-coated BC particles are preferentially activated, enhancing their removal. (fig 2)
 - Reduction in light scattering
 - Decrease in SSA
 - Strong effect
- Brown Carbon (BrC) bleaching
 - Reduction in light absorption; little effect on scattering
 - Increase in SSA
 - Weak effect
- Much of the non-refractory material is bound with BC
- BrC plays secondary role to BC in determining SSA

Aerosol-cloud interactions in BB plumes drives BC to center stage

Research Associate for Aerosol Microphysics

Research into the microphysical, optical, hygroscopic, and cloud-nucleating properties of aerosols, specifically light-absorbing aerosols, and how these properties affect radiation transmission through the atmosphere, including aerosol-cloud interactions.

Our laboratory is outfitted with several state-of-the-art instruments that include the Single Particle Soot Photometer (SP2), Centrifugal Particle Mass Analyzer (CPMA), BNL-designed Photothermal Interferometer (PTI) for measurement of light absorption, and Cloud Condensation Nuclei (CCN) counter, along with core aerosol instrumentation (e.g., particle counters, scanning mobility particle sizer, particle generation).

https://jobs.bnl.gov/job/upton/research-associate-for-aerosolmicrophysics/3437/11754016 Extra slides

Model Prediction of Cloud Processing of Absorbing Aerosols

Microphysical Implications of rBC Mixing State

5) Optics: Mie code for core-shell to calculate SSA

- rBC: RI=1.8 0.8*i
- BrC: RI=1.5-0.01*i (imaginary part can't be larger because of initial SSA (~0.9))

