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Next we probe the potential microphysical and optical implications of the derived 
rBC mixing state.

Probing rBC Mixing State

Condensation

Coagulation

Evidence for both 
Particle types in the 
near Source

Today’s discussion: Assume an 
idealized “core-shell” morphology

Coating Thickness

Wildfires offer a unique set of conditions that favor a variety of rBC-containing particle 
morphologies.

- rBC – POA coagulation
- condensation of organic material on rBC



Detection of refractory black carbon (rBC) using laser-induced incandescence

Schematic from 
Schwarz et al., 2008

614 J.P. SCHWARZ ET AL.
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FIG. 1. Schematic of the flame-generated soot generation and detection scheme with the filter sampler, single particle soot photometer (SP2), scanning mobility
particle sizer (SMPS), condensation particle counter (CPC), Couette centrifugal particle mass analyzer (CPMA), and differential mobility analyzer (DMA).

2. SP2 INSTRUMENT AND PROCEDURES

2.1. Single Particle Soot Photometer (SP2) Apparatus
The SP2 consists of an intense intra-cavity laser, a flow con-

trol system to confine sample aerosol to the center 1/4 of the laser
beam, four optical detectors focused on the intersection of the
sample aerosol with the laser beam, and electronic resources
necessary to store the response of the detectors to individual
particles crossing the laser beam (Figure 2).

A solid-state pump laser (808 nm, Unique-Mode AG, Jena,
Germany) is fiber-optically coupled to a Nd:YAG crystal that
is coated on one side with a reflective coating at 1064 nm.
The coating defines one side of the laser cavity, while a high-
reflectivity mirror defines the other side. The laser is tuned such
that it is in a TEM 0,0 mode, i.e., with a Gaussian intensity

Nd:YAG crystal
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FIG. 2. Schematic of the Single Particle Soot Photometer (SP2) following
Schwarz et al. (2006). The sample aerosol is confined with filtered sheath flow
to the center 1/4 of the laser beam, and then drawn out of the laser cavity through
the exhaust line. Although drawn in the page for simplicity, the sample line and
exhaust lines extend perpendicular to the detection axes (i.e., vertically into and
out of the page).

profile. A pinhole aperture (I.D. 2.3 mm) is placed in the cavity
to constrain the spatial mode of the laser and reduce pump light
leakage into the cavity. Some laser radiation (at 1064 nm) leaks
through the mirror. This light is filtered to remove contributions
from the pump laser and detected with a “leakage” photodetec-
tor, providing a convenient relative measure of laser intensity.
Since the amount of leakage depends on the (unknown) quality
of the mirror, the photodetector signal cannot be used to de-
rive an absolute measure of the laser intensity within the cavity.
With independent calibration, however, the signal can be used
as a relative measure of intensity (as in Section 2.3). Note that
although the laser cavity is defined by high-reflectivity mirrors,
the cavity finesse, Q, is limited by the Nd:YAG crystal itself to
a low value (on order ∼100). Thus the laser beam is expected to
be insensitive to the small perturbation caused by the presence
of a small particle in its path. This insensitivity has been con-
firmed through inspection of the leakage light when particles
traversed the laser.

Sample aerosol is continuously introduced to the laser cavity
through a capillary (typically 0.43 mm ID). The input aerosol
stream is confined to the center ∼ 1/4 of the laser (which has a
∼1.1 mm 95% intensity width), so individual particles travers-
ing the beam experience peak intensities of ∼70–100% of the
intensity at its center. The measurement of the width of the
aerosol jet was made with PSL particles in the diameter range of
200–600 nm. It is possible that diffusion may increase the width
of the jet for small particles (≪200 nm), thereby reducing the
efficiency of their detection by the SP2. Here this mechanism
is not addressed. The aerosol interacts with the laser at a pres-
sure that is typically within 20 hPa of ambient (i.e., sea-level
pressure, 1013 hPa) in this study.

The aerosol flow into the SP2 is measured with a laminar
flow element; the pressure difference across the element is pro-
portional to the volume flow through the element. The laminar
flow element was calibrated several times over the course of
the intercomparison with a Gilian flow standard (Gilibrator 2,
Sensidyne, Clearwater, FL, USA). In general, the sample flow
remained constant as long as the upstream plenum pressure was
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Probing Refractory Black Carbon (rBC) Mixing State
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rBC mixing state (i.e., coating thickness distribution as a function of rBC core diameter)



Use scattering and incandescence signals from individual rBC containing particles to probe 
rBC mixing state (i.e., coating thickness distribution as a function of rBC core diameter)
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Use scattering and incandescence signals from individual rBC containing particles to probe 
rBC mixing state (i.e., coating thickness distribution as a function of rBC core diameter)
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Use scattering and incandescence signals from individual rBC containing particles to probe 
rBC mixing state (i.e., coating thickness distribution as a function of rBC core diameter)
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rBC Particle Mixing States from LASIC & ORACLES
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1) BC-coated particle is in core-shell configuration.
Assumption supported by large coating thicknesses.

rBC Particles are Thickly-Coated Nearest the African Coast
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Thickly-coated rBC particles in Near Source 

Near source rBC mixing suggests negligible coating loss rBC particles from origin to P3 sampling point.

MBO < 12 hrs old 

~1000 km

ORACLES Modelers

Region sampled by P3 on 10-17

~ 1 day old
< 3 hrs old - BBOP 



To better quantify the rBC-containing particle mixing state, only a subset of coating 
thicknesses are used so as to avoid detection limit issues discussed earlier.

For SP2 colleagues, the LEO methodology was employed in this mixing state analysis

Quantifying rBC Mixing State
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Variability in Derived rBC Coating Thicknesses

• Except for near source transect, all ISO inlet gives coating thicknesses < 40 nm for rBC dia=100 nm
• CVI inlet data spans the range from most thickly-coated particles to that observed in ISO inlet
• rBC particles analyzed from LASIC (Ascension island) exhibit the thinnest coatings

Cloud processing leaves behind only residual particles (i.e., smaller total diameter)
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Coated particles experienced the same vapor-pressure history;
thus, a given (coat, DBC) determines coating for any DBC.

Assumption supported by:
1) constant VP history line near max contours
2) steepness of contour lines
3) agreement of calculating mass fraction (MFOA) in region where SP2 determines 
both coat and DBC: 0.93 by integration, 0.89 by constant VP line

Reconstructing Coated Core Mass Distribution
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Activation: Kohler for core-shell (depends mainly on Dtot)
• k = 0.15 (typical for organics)
• scrit = 0.1% (insensitive, coupled to k)

Activation of Coated rBC Cores
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rBC Particle Mixing States from LASIC & ORACLES
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• Wet deposition through precipitation

• Aqueous phase chemistry (molecular fragmentation à higher volatility species)

How Might Activation Promote Coating Loss 

Aqueous
phase

VOC VOC

H2O2
O3

H2O2
O3

Organics,
NH4

+, SO4
-2



Comparison of Model and Measurement of BB SSA

§Dobracki 2019 private communication; *Dobracki et al., AMS 2019; ‡Aiken et al., DOE-ASR Sci. Team Mtg, 2018
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Model Prediction: Large Fraction of NR-Material is Coating
• Experimental measurement indicate the rBC cores are thickly coated 
• Model presented here provides a way of estimating relative quantities (mass ratio) 
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How Much OA is Bound with rBC?
ORACLES AMS data courtesy of A. Dobracki 

LASIC AMS data courtesy of A. Atkin et al.

A substantial fraction of non-refractory material is bound with rBC! 
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Take Home Messages
§ BC from African biomass burns is thickly-coated in the 

near source and thinly-coated in the far field. (figs 1/3)

§ SSA decreases from near source to far source. (figs 1/3)

§ Thickly-coated BC particles are preferentially activated, 
enhancing their removal. (fig 2)

§ Reduction in light scattering 
§ Decrease in SSA
§ Strong effect

§ Brown Carbon (BrC) bleaching
§ Reduction in light absorption; little effect on scattering
§ Increase in SSA
§ Weak effect

§ Much of the non-refractory material is bound with BC

§ BrC plays secondary role to BC in determining SSA
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Activation/Cloud Processing Drives BB Optical Property Evolution

Aerosol-cloud interactions in BB plumes drives BC to center stage  



Research Associate Position in Aerosol Microphysics

Research Associate for Aerosol Microphysics
Research into the microphysical, optical, hygroscopic, and cloud-nucleating properties 
of aerosols, specifically light-absorbing aerosols, and how these properties affect 
radiation transmission through the atmosphere, including aerosol-cloud interactions. 
Our laboratory is outfitted with several state-of-the-art instruments that include the 
Single Particle Soot Photometer (SP2), Centrifugal Particle Mass Analyzer (CPMA), BNL-
designed Photothermal Interferometer (PTI) for measurement of light absorption, and 
Cloud Condensation Nuclei (CCN) counter, along with core aerosol instrumentation 
(e.g., particle counters, scanning mobility particle sizer, particle generation).

https://jobs.bnl.gov/job/upton/research-associate-for-aerosol-
microphysics/3437/11754016

https://jobs.bnl.gov/job/upton/research-associate-for-aerosol-microphysics/3437/11754016
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SSArBC = 0.75
SSABrC = 0.95

Model Prediction of Cloud Processing of Absorbing Aerosols

Cloud processing removes larger particles

SSArBC = 0.42 
SSABrC = 0.89

SSArBC = 0.77 
SSABrC = 0.98

SSArBC = 0.42 
SSABrC = 0.94

BrC imag = - 0.01 BrC imag = - 0.01

BrC imag = - 0.005 BrC imag = - 0.005

%SS = 0.1

%SS = 0.1



5) Optics: Mie code for core-shell to calculate SSA
• rBC: RI=1.8 – 0.8*i
• BrC: RI=1.5-0.01*i (imaginary part can’t be larger because of initial SSA (∼0.9))

Microphysical Implications of rBC Mixing State
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