Surface observational data requirements from high-resolution modeling perspectives

Qi Tang, Shaocheng Xie, and Yunyan Zhang

ARM/ASR PI meeting
Rockville, MD, June 10—13, 2019

Acknowledgments

DOE ARM program and E3SM program

LLNL-PRES-777120

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security. LLC

Warm season LAC at SGP: ARM observations

Tang et al., 2018

∘E20

Journal of Geophysical Research: Atmospheres

2014

RESEARCH ARTICLE

10.1002/2013JD020492

Key Points:

- Statistically significant SGP landatmosphere interactions occur
- Atmospheric forcings predominate

Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains

Thomas J. Phillips¹ and Stephen A. Klein¹

Geophysical Research Letters

2015

RESEARCH LETTER

10.1002/2015GL066305

Vegetation controls on surface heat flux partitioning, and land-atmosphere coupling

Key Points:

Evaporative fraction is often better

Ian N. Williams¹ and Margaret S. Torn¹

Journal of Geophysical Research: Atmospheres

2017

∘E19

• E4

RESEARCH ARTICLE

10.1002/2017JD026740

Key Points:

- Wheat and its harvest timing impact regional surface energy partitioning and land-atmosphere coupling in the Southern Great Plains
- Leaf area has the greatest influence on evaporative fraction at sites in the LLS.

The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern
Great Plains

Justin E. Bagley¹, Lara M. Kueppers^{1,2}, Dave P. Billesbach³, Ian N. Williams¹, Sébastien C. Biraud¹, and Margaret S. Torn^{1,2}

Journal of Geophysical Research: Atmospheres

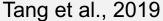
RESEARCH ARTICLE

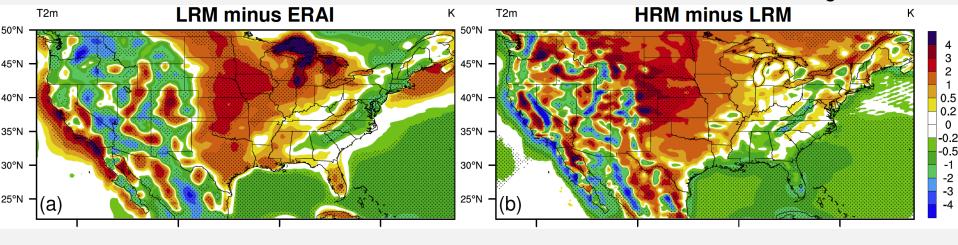
10.1029/2018JD028463

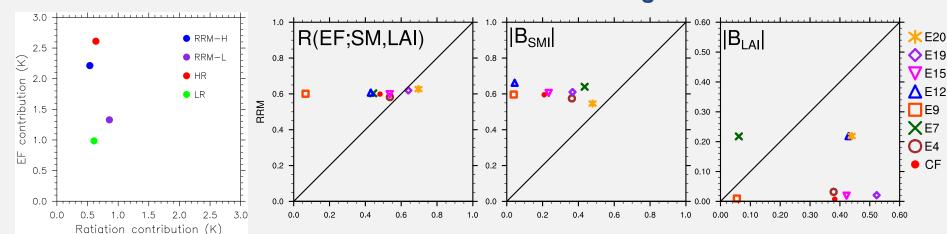
Key Points:

Observations show moderate to
 weak terrestrial segment I A coupling

Heterogeneity in Warm-Season Land-Atmosphere Coupling Over the U.S. Southern Great Plains


Qi Tang¹ , Shaocheng Xie¹ , Yunyan Zhang¹, Thomas J. Phillips¹ , Joseph A. Santanello² , David R. Cook³ , Laura D. Riihimaki⁴ , and Krista L. Gaustad⁴




Remaining high-res model biases related to LAC

DOE E3SM V1

DOE E3SM V1 nudged RRM

What surf. obs data are needed for high-res model?

- Long-term, co-located measurements.
- High-res LAI data

