

The DOE ARM Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Field Campaign: LACI Measurements

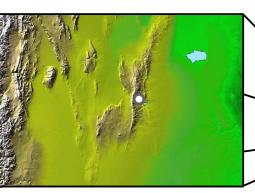
June 10, 2019 2019 ARM-ASR PI Meeting

Adam Varble Pacific Northwest National Laboratory

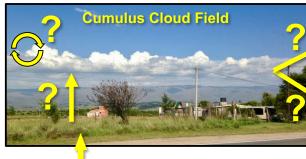
U.S. DEPARTMENT OF ENERGY BATTELLE PNNL is operated by Battelle for the U.S. Department of Energy

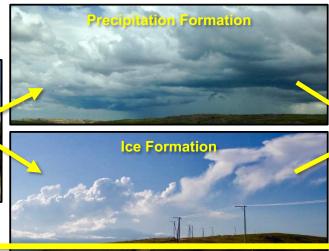
Broad Overview

Pacific Northwest

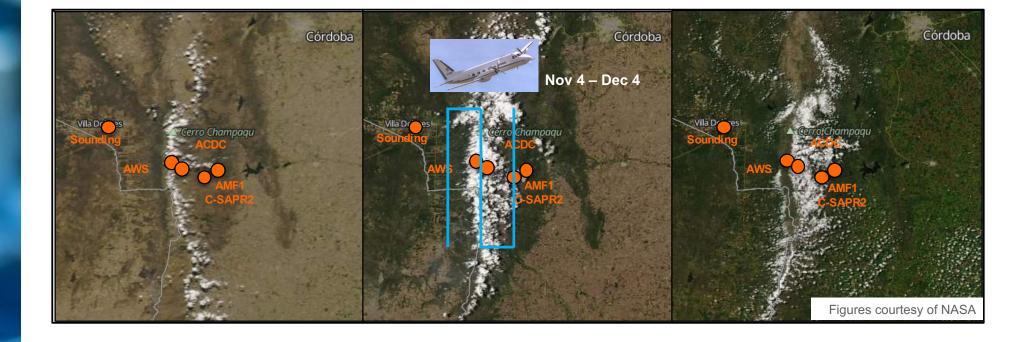

<u>Timing</u>: 15 October 2018 – 30 April 2019

Location: Villa Yacanto, Argentina (32.1°S, 64.75°W)


<u>Facilities</u>: AMF-1 (> 50 instruments), C-SAPR2 radar, G-1 aircraft (IOP, > 50 in situ instruments), and supplemental AWS, photogrammetry and sounding sites


IOP was coincident with NSF-led RELAMPAGO field program from 1 Nov – 18 Dec 2018

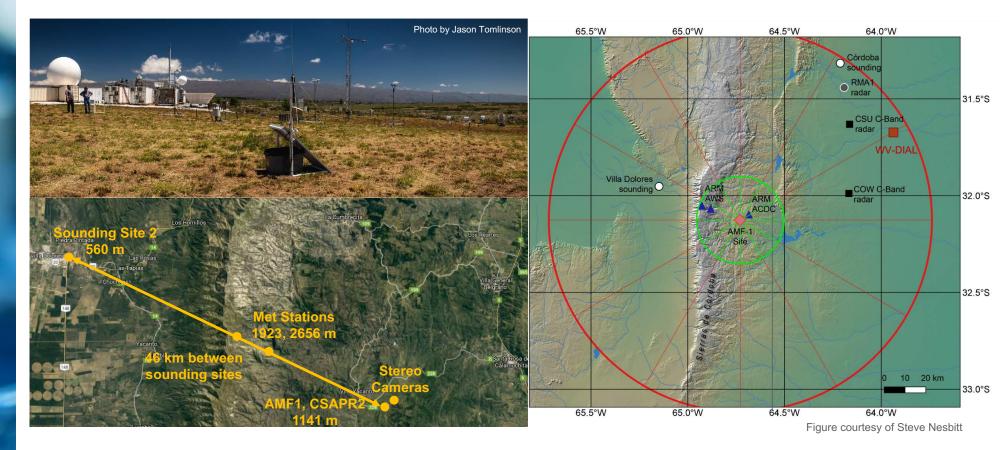
<u>Primary Goal</u>: Quantify the sensitivity of convective cloud system evolution to environmental conditions for the purposes of evaluating and improving model parameterizations



Repeated Cumulus Development with Variable Aerosol and Land Surface Properties

Pacific Northwest

Science Questions


- 1. How are the properties and lifecycles of orographically generated boundary layer clouds, including cumulus humulis, mediocris, congestus, and stratocumulus, affected by environmental kinematics, thermodynamics, aerosols, and surface properties?
 - How do these clouds types alter the lower free troposphere through detrainment?
- 2. How do environmental kinematics, thermodynamics, and aerosols impact deep convective initiation, upscale growth, mesoscale organization, and system lifetime?
 - How are soil moisture, surface fluxes, and aerosol properties altered by deep convective precipitation events and seasonal accumulation of precipitation?

These questions are intentionally very general. The location in Argentina was primarily chosen because of its very high frequency of orographic convective clouds in a wide variety of environments uniquely observable from a fixed location.

4

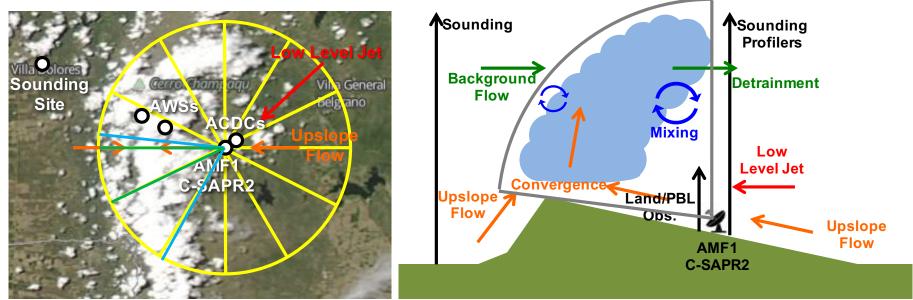
Siting

Siting

6

Ground Instrumentation

	Property	Instrument
	Hydrometeor radar reflectivity, Doppler velocity and spectra, cloud/precipitation kinematic and microphysical retrievals	C-band Scanning ARM Precipitation Radar (C- SAPR2) Ka/X-band Scanning ARM Cloud Radar (X/Ka-SACR) Ka-band ARM Cloud Radar (KAZR) Radar wind profiler (precipitation mode)
	Heights of cloud bases and tops, cloud sizes and vertical velocities	ARM Cloud Digital Cameras (ACDC)
	Cloud base height	Ceilometer
	Cloud scene/fraction	Total Sky Imager (TSI)
	Raindrop size distribution, fall speeds, rainfall	Laser disdrometer 2D video disdrometer (2DVD) Tipping bucket rain gauge Weighing bucket rain gauge Optical rain gauge
	Liquid water path, precipitable water	2-Channel Microwave Radiometer (MWR-2C) 3-Channel Microwave Radiometer (MWR-3C) Microwave Radiometer Profiler (MWR-P) High-Frequency Microwave Radiometer (MWR-HF)
	Surface pressure, temperature, humidity, winds, visibility	Surface meteorological instrumentation
	Vertical profiles of temperature, humidity, winds	Balloon-borne sounding system Radar wind profiler (wind mode) Microwave Radiometers
	Boundary layer winds and turbulence	Doppler lidar Sodar
	Surface latent and sensible heat fluxes, CO ₂ flux, turbulence, soil moisture, energy balance	Eddy Correlation flux measurement system (ECOR) Surface Energy Balance System (SEBS)


Ground Instrumentation

Property Instrument Downwelling sky shortwave, infrared, and spectral Upwelling and downwelling radiation radiometers Upwelling ground infrared and spectral radiometers Atmospheric Emitted Radiation Interferometer (AERI) Multifilter radiometer Multifilter Rotating Shadowband Radiometer (MFRSR) Infrared thermometer – ground and sky 2-Channel Narrow Field of View Zenith Radiometer Hemispheric Shortwave Array Spectroradiometer Zenith Shortwave Array Spectroradiometer Aerosol backscattered radiation Micropulse lidar profile Doppler lidar Aerosol optical depth Cimel Sun photometer Multifilter Rotating Shadowband Radiometer (MFRSR) Dual Column Cloud Condensation Nuclei (CCN) counter Cloud condensation nuclei concentration Condensation Particle Counters (CPC, UCPC) Condensation nuclei concentration **INP** concentration Filters for offline processing in CSU ice spectrometer Aerosol chemical composition Aerosol Chemistry Speciation Monitor (ACSM) Black carbon Single Particle Soot Photometer (SP2) Aerosol extinction Ambient and variable humidity nephelometers Aerosol absorption Particle Soot Absorption Photometer (PSAP) Aerosol particle size distribution Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) Scanning Mobility Particle Sizer (SMPS) Aerodynamic Particle Sizer (APS) Trace gas instrument system

Measurement Strategy

Measure cloud base inflow properties with in situ/remote sending measurements of clouds, precipitation, and cloud-detrained air properties in the free troposphere

On site operations is limited to daytime (9 AM to 9 PM local – 12Z to 0Z) with 4-5 AMF site soundings (every 3-4 hours) and 2-3 upstream soundings (every 6 hours)

Two automated weather stations at higher elevations and cameras for photogrammetry Ka/X-SACR performs 30° sector RHI and 3 HSRHI patterns along yellow radials in 15 min

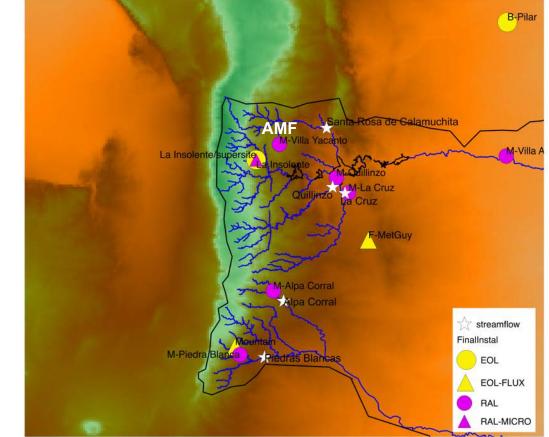
Categorized Days: Overhead Clouds/Precipitation

Pacific Northwest

Cloud Regime Over AMF Site	Dates (Note that the official campaign period was Oct 15-Apr 30)
Cumulus Humulis, Congestus or Stratocumulus (183 days)	October 1, 3, 4, 5, 6, 9, 10, 11, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 November 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 December 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 31 January 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31 February 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27 March 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31 April 1, 2, 4, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
Deep Convection (80 days)	October 14, 17, 18, 19, 22, 24, 25, 26, 28, 30, 31 November 3, 4, 5, 6, 10, 11, 12, 13, 17, 22, 26, 27, 29, 30 December 1, 2, 5, 6, 10, 13, 14, 18, 19, 20, 27, 28, 30 January 2, 3, 6, 9, 10, 13, 14, 15, 17, 22, 23, 24, 25, 26, 29, 30, 31 February 1, 8, 11, 12, 19, 21, 23, 24 March 4, 7, 8, 9, 15, 16, 17, 20, 25, 31 April 1, 15, 20, 21, 22, 24, 30
Surface Rainfall (96 days)	October 1, 11, 12, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31 November 1, 3, 4, 5, 6, 7, 11, 12, 13, 22, 26, 27, 28, 29, 30 December 1, 2, 5, 10, 13, 14, 18, 19, 20, 27, 28, 30 January 2, 3, 6, 9, 10, 13, 14, 15, 17, 18, 22, 23, 25, 26, 29, 30, 31 February 1, 3, 8, 9, 11, 12, 22, 23, 24, 25, 26 March 4, 5, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 26, 26, 31 April 1, 15, 20, 21, 22, 24, 25, 26, 27, 30

ARM Value Added and PI Product Plans

VAP	Measurement
AERINF	Longwave spectral radiances
AERIoe	Boundary layer temperature and humidity
AOD	Aerosol optical depth
AOP	Aerosol optical properties
ARMBE	Hourly best estimated climate relevant variables
CMAC2.0	Corrected radar measurements and retrievals
KAZR-ARSCL	Cloud boundary time-heights with corrected KAZR reflectivity and velocity
DLPROF	3D wind profiles
INTERPSONDE	Temperature, humidity, pressure, and wind time-heights (no ECWMF)
MERGESONDE	Temperature, humidity, pressure, and wind time-heights (including ECMWF)
MPLCLDMASK	Cloud mask and depolarization ratio from micropulse lidar
MWRRET	Precipitable water vapor and liquid water path estimates
PBLHT	Boundary layer height estimates
РССРР	Cloud boundary locations and movements from stereo cameras
QCECOR	QC'ed latent and sensible surface fluxes
QCRAD	QC'ed surface radiative fluxes
RADFLUX	Clear sky downwelling broadband radiation for computing CRE
VARANAL	Large-scale advective tendencies
SatCORPS (Langley)	GOES-16 cloud retrievals at 1 or 15-min frequency depending on time period
Additional PI Products	Radar retrievals and Cartesian gridded products, and ice nucleating particle concentrations

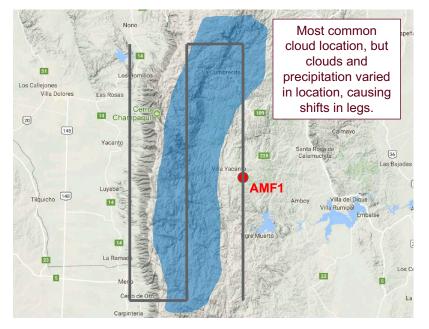

RELAMPAGO-Hydro NSF Field Campaign

<u>Pls</u>

Francina Dominguez, University of Illinois David Gochis, NCAR Marcelo Garcia, University of Córdoba

Measurements (June 2018 – April 2019)

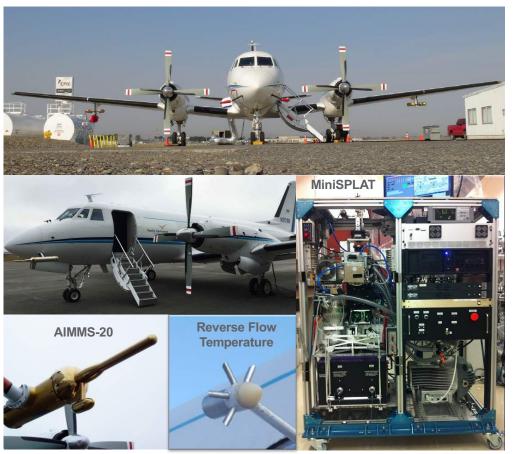
- EOL Stations
 - Tipping bucket rain gauge
 - Temperature, RH, pressure, winds
 - Near surface soil moisture, temperature, heat flux, heat capacity
 - Leaf wetness
 - Incoming/outgoing SW/LW Radiation
 - For a subset:
 - Surface fluxes (F-MetGuy, La Insolente)
 - Parsivel disdrometer (F-MetGuy, B-Pilar)
- RAL Stations
 - Tipping bucket rain gauge
 - Temperature, RH, pressure, winds
 - 5 and 25 cm soil temperature and moisture
 - Leaf wetness
 - Downward SW irradiance
- Plus, streamflow and local hydrologic network
- Datasets should be available by late 2019/early 2020



G-1 Flight Strategy (see Alyssa Matthews poster #69, Wed 3:30-5 PM)

22 flights between November 4 and December 8, 2018

- Timing: Mid morning to afternoon (2-4 hour flights)
- Patterns: North-south, constant altitude legs with vertical spiral over the AMF1 for some flights
- Altitudes: As low as possible in PBL, just below cloud base, mid cloud, and cloud top


Objectives

- 1. Follow changes in aerosol properties from the surface to just below cloud base to in and out of clouds in the lower free troposphere
- 2. Measure high-resolution in situ relationships between convective cloud kinematic, microphysical, and macrophysical properties
- 3. Measure spatially varying thermodynamic, kinematic, and aerosol conditions in and around convective clouds including relationships with cloud microphysical and macrophysical evolution
- 4. Use measurements of hydrometeors and winds to fine tune radar retrievals of cloud properties

G-1 Instrumentation (see Alyssa Matthews poster #69, Wed 3:30-5 PM)

Property	Instrument
Position/Aircraft parameters	Gust probe: Rosemount 1221F2
	AIMMS-20 GPS (Global Positioning System) DSM 232 C-MIGITS III (Miniature Integrated GPS/INS Tactical System) VN-200 GPS/INS
	Video Camera P1344
Meteorology	Aircraft Integrated Meteorological Measurement System (AIMMS-20)
	Tunable diode laser hygrometer (TDL-H)
	GE-1011B Chilled Mirror Hygrometer
	Licor LI-840A
	Rosemount 1201F1
	Rosemount E102AL
	Reverse flow temperature probe (100 Hz)
Aerosol optical properties	Single Particle soot Photometer (SP2)
	3-wavelength Integrating Nephelometer, Model 3563
	3-wavelength Particle Soot Absorption Photometer (PSAP)
	3-wavelength Single channel Tricolor Absorption Photometer (STAP)
Chemical composition	Single Particle Mass Spectrometer (MiniSPLAT II)
Trace Gas measurements	N2O/CO -23r
	O ₃ Model 49i
	SO ₂ Model 43i

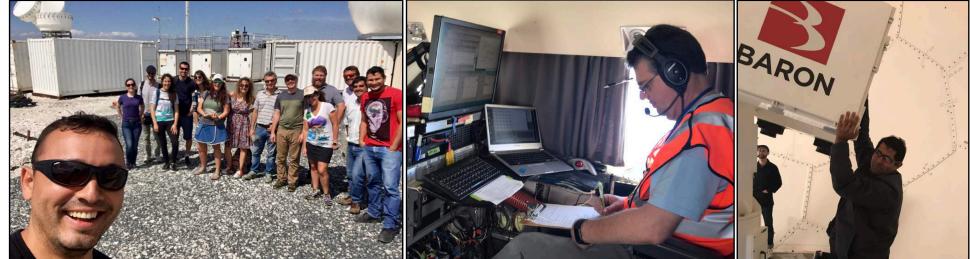
G-1 Instrumentation (see Alyssa Matthews poster #69, Wed 3:30-5 PM)

Property	Instrument	
Hydrometeor size distribution	Fast Cloud Droplet Probe (F-CDP)	
	Fast Forward Scattering Spectrometer Probe (F- FSSP)	
	2-Dimensional Stereo Probe (2DS)	
	High Volume Precipitation Sampler 3 (HVPS-3)	
	Cloud Particle Imager (CPI)	
	Cloud Imaging Probe (CIP)	
	Cloud and Aerosol Spectrometer (CAS)	
Cloud liquid water	Particle Volume Monitor 100-A (PVM-100A)	
content	Multi-Element Water Content System (WCM-2000)	
	Hot-wire probe from CAPS	
Cloud extinction	Cloud Integrating Nephelometer (CIN)	
Aerosol sampling	Aerosol Isokinetic Inlet	
	Counterflow Virtual Impactor (CVI)	
Aerosol size distribution	Ultra-high Sensitivity Aerosol Spectrometer (UHSAS)	
	Scanning Mobility Particle Sizer (SMPS)	
	Passive Cavity Aerosol Spectrometer (PCASP- 100X)	
	Optical Particle Counter (OPC) Model CI-3100	
Aerosol number concentration	Ultrafine Condensation Particle Counter (UCPC) Model 3025A	
	Condensation Particle Counter (CPC), Model 3772	
Cloud condensation nuclei	Dual-column cloud condensation nuclei counters (CCN)	
Ice nuclei concentration	Filter collections for CSU Ice Spectrometer	

G-1 Flights

Primary Objective	# of Flights	Dates
Cumulus-Environment Interactions	8	Nov 16, 17, 20, 24, 25, 28 Dec 3, 7
Deep Convective Initiation	8	Nov 4, 6, 10, 12, 21, 29 Dec 4, 5
Microphysics Measurements Within Radar Scans	3	Nov 22 Dec 1, 2
Aerosol Characterization	3	Nov 14, 15 Dec 8

Thank You


CACTI Background and Science Plan: www.arm.gov/research/campaigns/amf2018cacti

CACTI Datasets (Most already available with QC/retrievals in progress): www.archive.arm.gov or www.arm.gov/research/campaigns/amf2018cacti

RELAMPAGO Field Catalog/Datasets: https://www.eol.ucar.edu/field_projects/relampago

Contact: adam.varble@pnnl.gov

