

Proudly Operated by Battelle Since 1965

Water Vapor lidar: The Vaisala Broadband Differential Absorption Lidar (DIAL)

ROB NEWSOM¹, DAVE TURNER², RAISA LEHTINEN³, CHRISTOPH MÜNKEL^{3*}, JUKKA KALLIO³, RENO ROININEN³

¹ PNNL, RICHLAND, WA, USA ² NOAA/ESRL, BOULDER, CO, USA ³ VAISALA, VANTAA, FINLAND * RETIRED

DOE ASR PI meeting, June 10-14, North Bethesda/Rockville, MD

- There is a need for a national network of (small and cheap) ground-based instruments capable of profiling water vapor and temperature in the atmospheric boundary layer.
- Back in the spring of 2017, Vaisala approached ARM about deploying their new water vapor Differential Absorption Lidar (DIAL) to SGP for evaluation
- Conducted a field campaign at SGP C1 to access performance the Vaisala DIAL

Background

- 15 May to 12 June 2017
- Deployed the DIAL next to the Raman lidar
- Compared water vapor mixing ratio from the DIAL to
 - Raman lidar
 - Radiosonde
 - AERI

Vaisala DIAL Specs

Proudly Operated by Battelle Since 1965

Laser eye-safety classification	1M	
Averaging time /reporting interval	20 min / 2 min	Weight = 130 kg
Maximum range	3000 m reported	
Range resolution	100 – 500 m	
Average power per unit	44 mW	
Pulse energy	5.5 μJ	
Pulse peak power	25 W	190 cm
FWHM pulse width	220 ns (33 m)	
Pulse repetition rate	8 kHz	
Wavelength (online/offline)	911.0 nm/ 910.6 nm	
FWHM spectral width (near/far range)	0.19 nm/0.17 nm	70 cm 70 cm
Telescope diameter (near/far range)	150 mm/280 mm	
Receiver detector	APD	ARM

The Vaisala Broadband DIAL

The Vaisala DIAL is unique in the sense that it uses a broadband approach.

Water Vapor Retrieval Using the Broadband Approach

Proudly Operated by Battelle Since 1965

Ratio of the online-to-offline return signals

$$\frac{P_{v_{on}}'}{P_{v_{off}}'} \simeq \frac{\int\limits_{-\infty}^{\infty} S_{on}(v - v_{on}) T_{WV}^2(v, z) dv}{\int\limits_{-\infty}^{\infty} S_{off}(v - v_{off}) T_{WV}^2(v, z) dv}$$
(1)

$$S_x(v-v_x)$$
 = Laser spectra

 $T_{WV}(v,z) = \exp\left(-\int_{0}^{z} N(z)\gamma(v,z)dz\right)$ = Transmission due to water vapor absorption

- Assumes aerosol backscatter >> molecular backscatter
- Online-to-offline aerosol backscatter ratio ~ 1
- Spectrally flat receiver transmission function
- Goal is to find N(z), the water vapor density, as a function height. In general, a closed-form solution for N(z) is not possible. Instead, N(z) must found using some sort of numerical optimization technique such that equation (1) is satisfied. This is a retrieval problem.

Contrast with Traditional Narrowband Approach

Proudly Operated by Baffelle Since 1965

$$\frac{P_{v_{on}}'}{P_{v_{off}}'} \simeq \frac{\int\limits_{-\infty}^{\infty} S_{on}(v - v_{on}) T_{WV}^2(v, z) dv}{\int\limits_{-\infty}^{\infty} S_{off}(v - v_{off}) T_{WV}^2(v, z) dv}$$
(1)

- In the case of narrowband DIAL the laser spectral widths are much narrower than the absorption feature of interest. In that case, the laser spectra can be approximated as delta functions, $S_x(v-v_x) \rightarrow \delta(v-v_x)$
- ► Equation (1) becomes $\frac{P'_{v_{on}}}{P'_{v_{or}}} \simeq \frac{T^2_{WV}(v_{on}, z)}{T^2_{WV}(v_{off}, z)}$
- A closed-form solution for the H₂O density can then be obtained

$$N(z) = \frac{\ln(P'_{v_{off}}(z) / P'_{v_{on}}(z))}{2(\gamma(v_{on}, z) - \gamma(v_{off}, z))}$$

Qualitative Comparisons

Proudly Operated by Battelle Since 1965

Quantitative comparisons

Proudly Operated by Battelle Since 1965

	DIAL-Sonde	RL-Sonde	AERI-Sonde
Bias (g kg ⁻¹)	-0.01	0.07	-0.23
StDev (g kg ⁻¹)	0.65	0.74	1.23
Corr	0.98	0.97	0.92
Mean percent difference (%)	0.42	0.87	-2.0

Profiles

Overall

8

Data Availability

Data availability for the DIAL was greater than 90 % below 900 m, but then decreases rapidly with height above this level to less than 10% above 1500 m AGL

Data availability is computed by adding the number of valid samples at a fixed height and dividing by the total number of time samples that were possible.

- Pros: The Vaisala DIAL showed excellent agreement with the radiosonde (and the Raman lidar) during the SGP field campaign
 - Bias ~-0.01g kg⁻¹, stDev ~ 0.65g kg⁻¹, corr ~0.98
 - Experienced no failures during the campaign
- Cons: The range was somewhat limited
 - Roughly 1.5 km max range
 - 90% data availability below 900 m, but decreased rapidly with height above 900m.
- Calibration?

Summary

- Estimates of the online and offline laser spectral widths were obtained by optimizing the agreement with the radiosonde measurements over the course of the entire experiment. This is essentially a calibration procedure.
- Linear trend analysis of the DIAL-sonde difference did not show significant drift with time over the course of the field campaign.

