Advancing the Use of ARM Observations for Large-Scale Earth System Model Development

Breakout session

Co-organized by Katia Lamer, Daniel Feldman, Jiwen Fan and Shaocheng Xie

2019 ARM/ASR PI meeting

Rockville, Maryland

June 10, 2019

	Large-scale models	Ground-based observations
Definition	Fractional area coverage Mass-weighted hydrometer properties	Size-related hydrometeor properties
Detection	All hydrometeor are simulated Presence of numerical noise	Only a fraction of all hydrometeor is detectable Detection limitations are instrument specific Presence of instrument noise
Scale/representativeness	Domain average quantities Or PDFs 100 km x 100 km x 30 min domain	Point observations ~2s resolution Or small domain ~40-60 km x 5 min
Statistical significance	Perturbations Sensitivity to parameters	Partial uncertainty quantification In retrieval space In forward-simulation space

Large-scale models Forward-simulation

Radar forward-simulation cloud liquid + cloud ice + precip liquid + precip ice

Lidar forward-simulation cloud liquid + cloud ice

Ground-based observations

<u>Radar observations</u> cloud liquid + cloud ice + precip liquid + precip ice

Lidar observations

	Large-scale models	Ground-based observations
Definition	Fractional area coverage Mass-weighted hydrometer properties	Size-related hydrometeor properties
Detection	All hydrometeor are simulated Presence of numerical noise	Only a fraction of all hydrometeors is detectable Detection limitations are instrument specific Presence of instrument noise
Scale/representativeness	Domain average quantities Or PDFs 100 km x 100 km x 30 min domain	Point observations ~2s resolution Or small domain ~40-60 km x 5 min
Statistical significance	Perturbations Sensitivity to parameters	Partial uncertainty quantification In retrieval space In forward-simulation space

Large-scale models Forward-simulation

Radar forward-simulation cloud liquid + cloud ice + precip liquid + precip ice

Lidar forward-simulation cloud liquid + cloud ice

Ground-based observations

<u>Radar observations</u> SOME OF THE cloud liquid + cloud ice + precip liquid + precip ice

<u>Lidar observations</u> SOME OF THE cloud liquid + cloud ice

Large-scale models Forward-simulation with Instrument model Radar forward-simulation

Ground-based observations

<u>Radar observations</u> SOME OF THE cloud liquid + cloud ice + precip liquid + precip ice

	Large-scale models	Ground-based observations
Definition	Fractional area coverage Mass-weighted hydrometer properties	Size-related hydrometeor properties
Detection	All hydrometeor are simulated Presence of numerical noise	Only a fraction of all hydrometeor is detectable Detection limitations are instrument specific Presence of instrument noise
Scale/representativeness	Domain average quantities Or PDFs ~100 km x 100 km x 30 min domain	Point observations ~2s resolution Or small domain ~40-60 km x 5 min
Statistical significance	Perturbations Sensitivity to parameters	Partial uncertainty quantification In retrieval space In forward-simulation space

Ground-based observations

Radar observations FOR A PENCIL BEAM

Ground-based observations

Radar observations FOR A PENCIL BEAM

Roughly the wind should take **12 hrs** to advect hydrometeor forming within 100 km from the site

	Large-scale models	Ground-based observations
Definition	Fractional area coverage Mass-weighted hydrometer properties	Size-related hydrometeor properties
Detection	All hydrometeor are simulated Presence of numerical noise	Only a fraction of all hydrometeor is detectable Detection limitations are instrument specific Presence of instrument noise
Scale/representativeness	Domain average quantities Or PDFs ~100 km x 100 km x 30 min domain	Point observations ~2s resolution Or small domain ~40-60 km x 5 min
Statistical significance	Perturbations Sensitivity to parameters	Partial uncertainty quantification In retrieval space In forward-simulation space

Agenda

- 1:40-1:50 Comparison of vertically pointing and scanning observations for the retrieval of domain average light precipitation rate Katia Lamer
- 1:50-2:05 Using CPOL data as an observational target for E3SM Robert Jackson
- **2:05-2:20** Evaluation of simulated convective cloud system and precipitation using ARM data in combination with NEXRAD and GPM data Jiwen Fan
- 2:20-2:35 Evaluation of parameterizations of mesoscale convective organization in Earth System Models – Daehyun Kim
- 2:35-2:50 ENA observations of boundary layer clouds and atmospheric condition relationships: application to CAM6 evaluation Catherine Naud
- 2:50-3:05 Experiences with LASSO and CMDV-MCS for Bridging the Observation–Model Divide William Gustafson

3:05-3:30 Discussion

Characterization of Shallow Oceanic Precipitation using Profiling and Scanning Radar Observations at the Eastern North Atlantic ARM Observatory

> Katia Lamer City University of New York, The City College

> In collaboration with Bernat Puigdomènech Treserras, Zeen Zhu, Bradley Isom, Nitin Bharadwaj, and Pavlos Kollias

2019 ARM/ASR PI meeting Rockville, Maryland June 10, 2019

Observations/Retrieval of Light Precipitation Rate

KAZR2

Vertically pointing observations Rain rates retrieved using the O'Connor et al. (2005) radar-lidar technique on calibrated backscatter observations

Now available as a PI product in the ARM archive

XSAPR2

1° elevation PPI scan covering $\sim 2,500 \text{ km}^2$ Rain rates retrieved using the *Lamer et al.* (2019) adaptive Z-R technique on calibrated radar reflectivity observations

Data accessible upon request

Observations collected at the ENA site Period 01/2018 to $04/2018 \sim 4$ months

Estimation of Domain Average Light Precipitation Rate

1. Estimate a domain average rain rate for each ~ 2,500 km² domain snapshot. Domain "snapshots" are collected every 5-minutes. Characterizing variations in Domain Average Precipitation Rate Across Various Timescales

2.

To characterize domain-average precipitation rate changes across different timescales

Average X-minutes worth of domain average rain rates

Characterizing variations in Domain Average Precipitation Rate Across Various Timescales

Estimating a Proxy for Domain Average Light Precipitation Rate Using Zenith observations

> 1. Centered on each X-SAPR2 domain snapshot estimate the average rain rate observed by KAZR2 at 200m in a X-minute time window

2.

Average the same X-minutes worth of "domain" average rain rates as used when treating the XSAPR2 observations

Characterizing variations in Domain Average Precipitation Rate Across Various Timescales

XSAPR2 rain rate retrieved from 1° PPI scan averaged over observation domain and in time

Can point observations be used to characterize the temporal variability of near surface rain rate over a $\sim 2,500 \text{ km}^2$ domain?

Based on 4-months of ENA observations

- Low-level precipitation rate statistics only converge when characterizing long-term (12-hourly) variability
 KAZR2 observations collected in 12-h windows around each XSAPR2 scan are needed to capture the ~ 40 km radius domain
- Scanning sensors are better suited to document sporadic and horizontal inhomogeneous precipitation
- Zenith-pointing radars more suited for precipitation that varies rapidly with height for instance owing to an active evaporation process

More details in Lamer et al. (2019) available in AMTD

