Scanning Radar
Sea-clutter Mitigation
using Deep Neural Networks

Edward Luke’, Bernat Puigdomenech?, Pavlos Kollias?3

1. Brookhaven National Laboratory
2. McGill Universityf

3. Stony Brook Univéfsity
e

ARM/ASR PI Meeting 2019, Bethesda, MD

{

BROOKHIAEN

NATIONAL LABORATORY

a passion for discovery

PPZ=S" Office of -!—
Zd Science /
.S NT OF ENERGY o \.:"

DEPARTME



Introduction

The quality of radar measurements performed by
ARM at the ENA site is subject to significant
impacts from sea clutter, non-meteorological
echoes that are a concern for both X-band and

Ka/W-band scanning radars at low elevation
angles.
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Introduction

Techniques based on thresholding of polarimetric
returns, particularly correlation coefficient
(RhoHV), have significant skill in identifying the
presence of hydrometeors embedded within sea-

clutter.
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Introduction

However, efficacy declines for weaker returns, and
the relative contributions of signal and clutter
become increasingly ambiguous. Machine
learning promises some interesting possibilities.
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The Past

Browse Conferences > 1990 IJCNN International Joint... @

1990 IJCNN International Joint Conference on Neural Networks

] A multl-layer neural network classifier for radar clutter
C. Deng ; S. Haykin
Publication Year: 1990, Page(s): 241 - 246 vol.1
Cited by: Papers (8)
¥ Abstract  @@](507Kp)  (©)

A multilayer neural network classifier has been successfully
computer for distinguishing several major categories of rada
birds, and ground. The experimental results show that the ne¢
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The Present

Today, the convergence of a number of neural
network architecture innovations, supported by

high performance computing hardware (e.g. GPUs)
has brought about a new renaissance in NN
scalability and versatility.
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The Present

Today, the convergence of a number of neural
network architecture innovations, supported by
high performance computing hardware (e.g. GPUs)
has brought about a new renaissance in NN
scalability and versatility.

A centerpiece of our work is the convolutional
neural network (CNN), a key part of the deep
learning (Lecun 2015) paradigm, which has
enabled dramatic progress in image analysis
applications.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-
444. DOI: 10.1038/nature14539
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Strategy

4 Transitioned from Caffe to PyTorch as our working
platform.

O Supervised learning using a RhoHV-based dataset.

d X-SAPR2 dataset with 87,000 labeled scans.

U Incorporate spatial and temporal NN analysis to
improve skill and separate signal from noise.

O Generate derivative products, such as surface wind fields
at sea.
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Dataset with 87,000 labeled scans
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Derivative Applications
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