Advancing observational constraints on high-latitude cloud processes

Ann Fridlind, NASA GISS giss.nasa.gov/staff/afridlind.html

Motivation

- uncertainty in GCM predictions of polar amplification
- supercooled cloud water plays an outsize role in polar surface energy budgets, GCM predictions
 - Zuidema, Intrieri, Curry et al. papers
 using SHEBA ice camp observations
 - Tan, Storelvmo, Kay et al. papers using climate models and CALIPSO observations

GISSTEMP 1970–2017 near-surface warming (K)

(a) Slightly Supercooled Stratiform Clouds (Tops 0° to -10°C)

SHEBA Arctic survey

(b) Moderately Supercooled Stratiform Clouds (Tops -10° to -20°C)

Rangno and Hobbs [JGR 2001] following Hobbs and Rangno [1998]

Continuous ice precipitation

Vertically pointing mm-wavelength radar

Klein et al. [QJRMS 2009]

Fridlind and Ackerman [Simulations of Arctic mixed-phase boundary layer clouds: Advances in understanding and outstanding questions, Ch. 7 in *Mixed-Phase Clouds: Observations and Modeling*, Ed. C. Andronache, 2018]

Well-defined liquid cloud base

glaciated parches?

M-PACE radar reflectivity and lidar cloud base

SHEBA simulation

Fridlind et al. [JAS 2012]

Big data

Avramov et al. [JGR 2011]

ISDAC intercomparison

pers ble? ren

Ovchinnikov et al. [2014]

GCM in SCM mode

- M-PACE intercomparison case [Klein et al. QJRMS 2009]
- GISS ModelE3 single-column model (Andy Ackerman)
 - moist turbulence scheme
 [Bretherton and Park 2009]
 - two-moment microphysics with prognostic precipitation [Gettelman and Morrison 2015]

GCM Δz ~ 100 m LES Δz ~ 30 m

Mixed-phase Sc LES case studies

Fridlind and Ackerman [Elsevier 2018]

Mixed-phase Sc LES case studies

Fridlind and Ackerman [Elsevier 2018]

NASA GSFC • 20 March 2019 • ann.fridlind@nasa.gov

Reflectivity-weighted aspect ratio

Matrosov et al. [JAOT 2017]

period 1

- SACR Ka-band
- circulation depolarization ratio (CDR) proxy 5

period 3

period 4

period 5

period 2

MASC period 1 stereo images

1.0

size (mm)

Reflectivity-weighted aspect ratio

- Matrosov et al. [JAOT 2017]
 - 40° CDR proxy or Zdr-based
 - characteristic size from dualfrequency reflectivity ratio (DFR) or dual Doppler velocity (for smaller particles)
 - uncertainty of 0.1–0.15
 - RHI scans averaged over 2° around 40° and 140°

Cloud structure, too

- cloud structure deconvolution from vertically pointing or QVP: is it even robustly possible?
- if there is not a very substantial gain from QVP, RHI is preferable

