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Climate Model Development and Validation – Mesoscale Convective System

(CMDV-MCS) is a BER project headed by PNNL to develop 
and validate DOE’s Accelerated Climate Model for Energy 
(ACME) model capability in simulating MCSs.

Goal
To improve understanding of warm season continental convection and develop 
treatments of convection and microphysics capable of representing MCS features in 
large-scale models

More explicitly:
• Develop and evaluate cloud parameterizations using observations and LAM/LES.
• Evaluate developments using ACME with RR grid centered over the ARM SGP site. 
• Use global observational data to evaluate ACME uniform-grid simulations.



CMDV-MCS

T1.  Cloud macrophysics and 
dynamics (Mikhail 
Ovchinnikov)

T2.  Cloud microphysics (Jiwen
Fan)

T3.  Q3D-MMF (David Randall)

T4.  MMF aerosol and cloud 
microphysics (Jiwen Fan)

T5.  Observations (Zhe Feng)

T6.  LES/LAM (Bill Gustafson)

T7.  Regional refinement (Erika 
Roesler)

T8.  Evaluation (Jiwen Fan and 
Kai Zhang)

• CMDV had eight main task areas spread amongst the team. 
• Regular integration between modelers and observationalists

to ensure activities were synergistic.
• This talk will focus on one of the observation activities

PI: Jiwen Fan



Taranis

• A task area for CMDV was to develop a suite of 
products from ARM radars to support model 
evaluation that scaled to multiple campaigns. 

• Initial focus on MC3E, with plans to support other 
campaigns.

• This talk examines this suite of products (Taranis) 
that includes corrections, gridding, and retrievals 
of geophysical quantities from cloud and 
precipitation radars. 

• Why some of these retrievals and corrections are 
necessary?



Observations of Precipitation in CMDV 
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Elements depend on: size/l, shape, 
orientation, dielectric constant, 

elevation angle and their statistical 
distributions (mean, variance) 

Dual polarization radars provide
Ø Reflectivity (𝑍")
Ø Differential reflectivity (𝑍#$)
Ø Differential propagation phase (𝜙#')
Ø Co-polar correlation coefficient (𝜌"))

Derived products
Ø Attenuation corrected 𝑍"
Ø Attenuation corrected 𝑍#$
Ø Specific differential phase (𝐾#')
Ø Co-polar correlation coefficient



The hydrometeors in the propagation medium absorb a portion of the energy 
from the wave which cause the signal to attenuate. The attenuation levels are 

dependent on the DSD and the size of the hydrometeors relative to the 
wavelength. Attenuation is attributed to the extinction cross-section.

Radar Data: Attenuation

𝛼",) = 4.343x100 ∫𝜎345
",) 𝐷 𝑁 𝐷 𝑑𝐷

Shorter wavelength (higher frequency) radars suffer significant 
attenuation in rain. The observed data must be corrected for the 

bias induced by attenuation due to rainfall
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varying rainfall rates, the natural variation of DSD can be
expressed in normalized Gamma model as [11]–[14]

N(D) =Nwf(µ)

(
D

D0

)µ

exp

[
−(3.67 + µ)

D

D0

]

f(µ) =
6

(3.67)4
(3.67 + µ)µ+4

Γ(µ + 4)
(1)

where N(D) is the number of the raindrops per unit volume
per unit size interval, D (in mm) is the volume-equivalent
spherical diameter, D0 is the median volume diameter, µ is a
measure of the shape of the DSD, and Nw (mm−1 m−3 ) is the
intercept parameter of the exponential distribution with same
water content and D0 .

Radar observations in rain medium can be expressed in terms
of DSD. Reflectivity factors Zh,v at horizontal (h) and vertical
(v) polarizations can be expressed as

Zh,v =
λ4

π5 |Kw|2

Dmax∫

Dmin

σh,v(D)N(D)dD (mm6 m−3 ) (2)

where λ is the wavelength of the radar and σh,v represents
the radar cross sections at horizontal and vertical polarizations.
Kw is the dielectric factor of water defined as Kw = (ϵr −
1)/(ϵr + 2), and ϵr is the complex dielectric constant of water.
Differential reflectivity (Zdr) can be defined as the ratio of
reflectivity factors at horizontal and vertical polarizations [15],
which is sensitive to drop shape. Specific differential phase is
proportional to the real part of the difference in the complex
forward scatter amplitudes f at horizontal and vertical polar-
izations. It can be expressed as

Kdp =
180

π
λRe

Dmax∫

Dmin

[fh(D) − fv(D)] N(D)dD (deg km−1 ).

(3)

The two-way differential propagation phase φdp between two
range locations r0 and r is expressed in terms of Kdp as

φdp = 2

r∫

r0

Kdp(s)ds (4)

where s is the path for integration. The measured differential
propagation phase can be defined as

ψdp = φdp + δ (5)

where δ is the backscattering propagation phase that is the
difference between arguments of the complex backscattering
amplitudes for horizontal and vertical polarizations. Electro-
magnetic waves passing through precipitation suffer from the
power loss resulting from absorption and scattering. Specific at-
tenuation at two polarization states and differential attenuation
are related to DSD as

αh,v = 4.343× 10−3

Dmax∫

Dmin

σext(h,v)(D)N(D)dD (dBkm−1 )

(6a)
αdp =αh − αv (6b)

where σext is the extinction cross section (m2 ) derived by the
sum of the absorption cross section and scattering cross section.
At centimeter wavelengths, absorption dominates for all rain
rates [14]. Two-way cumulative attenuation Ah and differential
attenuation Adp can be expressed as

Ah =2

r∫

r0

αh(s)ds (7a)

Adp =2

r∫

r0

αdp(s)ds. (7b)

Attenuation can also be due to atmospheric gases or cloud
droplets. Although the attenuation of X-band radar signals
by atmospheric gases can be comparable to rain attenuation
for lighter rainfall [16], this paper is concerned with rain
attenuation which is dominant in many practical cases. For an
inhomogeneous rain path, observed reflectivity (Z ′

h,v) at each
polarization and differential reflectivity (Z ′

dr) can be defined as

Z ′
h,v(r) =Zh,v(r)e

−0 .46
∫ r
0 αh,v(s)ds (8a)

Z ′
dr(r) =Zdr(r)e

−0 .46
∫ r
0 αdp(s)ds. (8b)

The attenuation correction algorithms have all mostly focused
on retrieving Zh,v and Zdr at each range sample.

III. ATTENUATION CORRECTION SYSTEM FOR

REFLECTIVITY AND DIFFERENTIAL REFLECTIVITY

(ACS) AND SELF-CONSISTENT METHOD (SC-ACS)

Lim and Chandrasekar [9] suggested a DRPA, which has
introduced the usage of Zdr for attenuation correction. The al-
gorithm proposed here (ACS) is based on the method suggested
by Lim and Chandrasekar [9]. In order to develop the algorithm,
the main concepts in [9] are summarized as follows.

A. Main Concept of the DRPA

DRPA is based on the notion that the specific attenuation
can be retrieved by solving the integral equations for reflec-
tivity and differential reflectivity with a cumulative differential
propagation phase shift constraint. DRPA is based on four
parametrizations as described in (9)–(12)

Z ′
h,v(r) =Zh,v(r)e

−0 .46
∫ r
0 αh,v(s)ds (9)

αh(r) = a1 [Zh(r)]b1 [Zdr(r)]
c1 (10a)

αv(r) = a2 [Zv(r)]
b2 [Zdr(r)]

c2 . (10b)

The specific attenuation at horizontal and vertical polarizations
can also be approximated through Kdp as

αh(r) = γKdp(r) (11)

αdp(r) =καh(r). (12)

After modest algebraic manipulation, solutions for αh and αv

are obtained as (13) and (14), shown at the top of the next
page. Lim and Chandrasekar [9] used the above algorithm to
eliminate the constant Nw assumption. However, the variability
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Overview of Taranis

• Taranis is a new set of radar products that combines the best of open source 
implementations with some new algorithms. 

• Taranis is a modular Python library that calculates geophysical quantities of 
interest using single or networks of radars. 

• Intended to be used for model evaluation. 
• Designed to be compatible with the various ARM frequency bands.
• This includes masking for QC, corrections of propagation effects, and retrievals 

of parameters of interest.
• Computationally expensive algorithms in C, everything driven by Python.



Taranis Data Flow
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Radar Data Processing



Radar Data Processing: Specific Differential Phase (𝐾#')

The specific differential phase (𝐾#') is a wave propagation property determined the 
DSD, shape, and orientation of the particles. The phase velocity of the horizontally 
and vertically polarized wave differ as they propagate through hydrometeors. This 

difference in phase can provide valuable information about the hydrometeors.

Radar

H

V

Phase velocity of the characteristic wave 
corresponding to vertical polarization is slowed down 

relative to horizontal polarization 

Phase velocity of the characteristic wave 
corresponding to horizontal polarization is slowed 

down relative to vertical polarization

𝐾#' =
1
2
𝑑𝜓#'
𝑑𝑟

As the wave propagates through rain the 
phase difference accumulates. As a result 
differential propagation phase increases 

monotonically in range.



• KDP is not a measured quantity however. Instead we measure Ψdp where 

• Kdp is a useful quantity both for retrievals and for correcting for attenuation
• It is unaffected by attenuation and closely related to rain rate. 

Challenge lies in estimating the slope of a noisy signal.    

Challenges in Kdp Estimation



Kdp Estimation

• Taranis utilizes a new KDP estimation algorithm  that combines the best of the spline approach 
from Yanting & Chandrasekar (2009) and the linear programming approach of Giangrande et. al. 
(2013).

• Additional self consistency and global constraints were added as well. 
• Fast C-based multi-threaded implementation with Python interface.
• Hybrid retrieval reworks the constraints in LP to incorporate spline based processing. 

Radar 1 Radar N

Estimate KDP
LP

Spline/SC



Radar Data Processing: Specific Differential Phase (𝐾#')

• 𝜓#' estimation is formulated as an optimization problem to minimize 𝐿=

• The above is formulated as a linear programming (LP) optimization problem

that one may estimate d as a residual of this retrieval and
the actual CDP. For the example LP formulation that
follows, a few basic assumptions have been adopted that
are similar to many previous processing efforts.
A monotonic behavior is assumed for propagation

phase FDP profiles in rain (nonnegative KDP). This as-
sumption should be valid below the melting layer and
along radials unaffected by NBF (strong storm ormelting
layer gradients) or significant artifacts from larger hail
(intrinsic negative differential phase behaviors). Invalid
data associated with ground clutter, second-trip echo,
nonmeteorological, and mixed phase hydrometeors (e.g.,
melting layer) should be identified so as to adjust (zero
out) weighting factors or for possible removal. These
problematic gates are identified using polarimetric
threshold criteria (often, highly radar specific) for the
cross-correlation coefficient rHV or the standard de-
viation ofCDP. TotalCDP profiles in this LP formulation
are also expected unfolded and having nonnegative
values.
Profiles of CDP associated with substantial NBF are

challenging for any processing method or eventual KDP

estimation that screens CDP according to rHV thresh-
olds. While not common, the CDP profiles in some ex-
treme instances may become too contaminated for
accurate differential phase processing. SinceZfields are
less susceptible to NBF (e.g., Ryzhkov 2007), hydro-
logical products in these regions may only be possible
using Z-based or attenuation-based methods.

a. Minimizing the L1 norm

Let b5 fb1, b2, . . . , bng be the differential phase data
array, x5 fx1, x2, . . . , xng be the variables of the ‘‘fit’’ or
processed array, and z5 fz1, z2, . . . , zng be the vari-
ables that appear in the cost function. Each of these
arrays is of length n. To minimize the L1 norm, we have
to minimize

L15 !
n

i51
jxi2bij . (1)

The standard approach to handle the absolute value
(Kiountouzis 1973; Portnoy and Koenker 1997) is to
allow either sign possibility for xi 2 bi by doubling the
number of inequality constraints to two for each vari-
able xi:

z1$x12b1; z1$ 2x11b1
z2$x22b2; z2$ 2x21b2
. . . . . .

zn$xn2bn; zn$ 2xn1bn

.

(2)

The inequalities in row i cover the two possibilities:
(i) xi 2 bi $ 0, in which case zi $ xi 2 bi 5 jxi 2bij and

the second inequality constraint holds trivially (i.e., is
inactive) because2xi 1 bi is either negative or zero; and
(ii) 2xi 1 bi $ 0, in which case zi $ 2xi 1 bi 5 jxi 2 bij
and the first inequality constraint is inactive. In either
case, we have zi $ jxi 2 bij and the minimization of L1 is
equivalent to the minimization of n-term cost function
z1 1 z2 1⋯1 zn. This result shows that minimization of
the L1 norm, Eq. (1), can be achieved using LP by dou-
bling the number of inequality constraints andminimizing
the cost function: z1 1 z2 1⋯1 zn. Note, if inequalities
from Eq. (2) are the only constraints in the problem, then
the cost function reduces to zero with x 5 b.
To set up the LP problem in canonical form, we re-

write the left set of inequalities as zi 2 xi $ 2bi and the
right set as zi 1 xi $ bi, and cast all of these constraints in
matrix–vector form as Axc $ b. The 2n 3 2n matrix A
has block form

A5

!
In 2In
In In

"
, (3)

where In is the n 3 n identity matrix, and the length 2n
vectors x and b are xc 5 fz, xgT, b5 f2b, bgT, and the
superscript T indicates transpose.

b. Monotonicity constraint

For differentiation of discrete and evenly spaced data,
x5 fx1, x2, . . . , xng, we adopt the five-point Savitzky–
Golay (SG) second-order polynomial derivative filter
[e.g., Madden 1978, Table I, Eq. (III)]: f20.2,20.1, 0.0,
0.1, 0.2g. SG least squares convolution filters offer a well-
standardized approach to digital data differentiation,
with an array of filters of different lengths and orders
from which to choose. Reliable KDP determination
requires abstracting reliable derivative estimates from
noisy radar data, and in this first presentation of the
LP–KDP approach, we limit filter testing to the mem-
bers from the SG class. The selection of filter length will
be discussed later in this section. Monotonicity is en-
forced through the requirement that the derivative, so
defined, be everywhere nonnegative. To avoid edges,
the filtering is initiated at the radial position corre-
sponding to xm11 and ended at xn-m, where 2m11 is the
filter length. Thus, monotonicity according to the five-
point filter adds a total of n24 derivative constraints
to the 2n L1 norm minimization constraints already
present. The new constraints are

20:2x120:1x210:0x310:1x410:2x5$0

. . .

20:2xn2420:1xn2310:0xn2210:1xn2110:2xn$0

.

(4)
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z1$x12b1; z1$ 2x11b1
z2$x22b2; z2$ 2x21b2
. . . . . .

zn$xn2bn; zn$ 2xn1bn

.

(2)
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(i) xi 2 bi $ 0, in which case zi $ xi 2 bi 5 jxi 2bij and
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matrix–vector form as Axc $ b. The 2n 3 2n matrix A
has block form

A5

!
In 2In
In In

"
, (3)

where In is the n 3 n identity matrix, and the length 2n
vectors x and b are xc 5 fz, xgT, b5 f2b, bgT, and the
superscript T indicates transpose.

b. Monotonicity constraint

For differentiation of discrete and evenly spaced data,
x5 fx1, x2, . . . , xng, we adopt the five-point Savitzky–
Golay (SG) second-order polynomial derivative filter
[e.g., Madden 1978, Table I, Eq. (III)]: f20.2,20.1, 0.0,
0.1, 0.2g. SG least squares convolution filters offer a well-
standardized approach to digital data differentiation,
with an array of filters of different lengths and orders
from which to choose. Reliable KDP determination
requires abstracting reliable derivative estimates from
noisy radar data, and in this first presentation of the
LP–KDP approach, we limit filter testing to the mem-
bers from the SG class. The selection of filter length will
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defined, be everywhere nonnegative. To avoid edges,
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point filter adds a total of n24 derivative constraints
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present. The new constraints are

20:2x120:1x210:0x310:1x410:2x5$0

. . .

20:2xn2420:1xn2310:0xn2210:1xn2110:2xn$0

.

(4)
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Mn−(m−1)/2 ,n =

⎛

⎜⎜⎜⎜⎝

CS−G(1) · · · CS−G(m) 0m+1 0m+2 · · · 0n

01 CS−G(1) · · · CS−G(m) 0m+2 · · · 0n

· · · · · ·
01 · · · 0n−m−1 CS−G(1) · · · CS−G(m) 0n

01 · · · 0n−m−1 0n−m CS−G(1) · · · CS−G(m)

⎞

⎟⎟⎟⎟⎠
(3)

systems and associated storm-scale research, precipitation
regimes and DSD properties does not change significantly from
gate to gate. Because of this, measurements of more than two
gates are often used to determine the KDP. This estimation
becomes overdetermined when multiple measurements are in-
volved in evaluating one variable [22]. All the aforementioned
methods concern the issue of solving this overdetermined sys-
tem and obtaining outcomes close to the intrinsic values. The
KDP estimation methods of LSF, LP, and self-consistency are
reviewed here.

A. LSF

LSF is a common regression approach to obtain approximate
solutions for an over-determined system. When the KDP of an
intermediate range gate needs to be determined, multiple ΦDP

measurements (with errors) from the gates adjacent along the
radial construct the whole system. Generally, the number of
gates to be included should be determined mainly according to
the standard deviation of the errors, which depends on the SNR
of the radar data, estimation error of ΦDP, and the variability
of KDP along the radial. As employed by the WSR-88D radar
and CSU-CHILL radar [23] systems, we apply piecewise LSF
on adaptive lengths with respect to echo intensity, i.e., ZH .
Two sets of experiments with different adaptive lengths are
run to examine the dependence of LSF on the filter lengths in
the succeeding section. One experiment uses the same adaptive
lengths as those used by WSR-88D, i.e., 2 km (6 km) for gates
where ZH is beyond (below) 40 dBZ. The other one uses twice
the WSR-88D adaptive lengths. The LSF formula is applied on
ΦDP measurements at the gates within the adaptive lengths to
obtain the KDP estimate at the intermediate gate, i.e.,

KDP =

n∑
i=1

{[
ΦDP(i) − ΦDP

]
• [r(i) − r]

}

2
n∑

i=1
[r(i) − r]2

(1)

where the overbar “−” means an averaged value, and r is the
distance of ΦDP measurements from the radar.

B. LP

As proposed by Giangrande et al. [17], results from the
LP with nonnegative constraints are summarized as follows.
The main idea is optimizing φDP under the physical con-
straints of rain. We denote the n-gate raw differential phase
ray with b = (b1, b2 , . . . , bn) and the filtered or processed
ray with x = (x1, x2 , . . . , xn), respectively. The LP problem
is set as minimizing the difference between b and x, i.e.,

f =
∑n

i=1 |xi − bi|. To mathematically deal with the absolute
value, an intermediate vector z = (z1, z2 , . . . , zn) is introduced
that represents the variables that appear in the cost func-
tion. Regardless of whether xi − bi is positive, negative, or
zero, zi ≥ |xi − bi| is always equivalent to the combination
of two inequalities zi ≥ xi − bi and zi ≥ bi − xi. Now, the
minimization of f becomes the minimization of the n-term cost
function

∑n
i=1 zi under two sets of constraints: zi − xi ≥ −bi

and zi + xi ≥ bi. Mathematically, we let xc = (z,x)T be the
independent variable of the LP problem. Now, the cost function∑n

i=1 zi, i.e., sum of the elements of z, can be rewritten as a
dot product c • xc, with the coefficient vector expressed as c =
(11, . . . , 1n, 0n+1, . . . , 02n). It was noted by Giangrande et al.
[17] that potential missing data in the observations can be han-
dled by setting the weights of the corresponding gates to zeros.

The matrix–vector form of the LP problem becomes min-
imizing c • xc under the constraint of Axc ≥ b, in which

A =

(
In −In

In In

)
, and In is the n × n identity matrix. If

there are no other constraints, the cost function reduces to
zero when x equals to b. When we add a nonnegative KDP

constraint to the LP problem as in Giangrande et al. [17], a
(n − ((m − 1)/2))× n matrix Mn−(m−1)/2 ,n is employed to
convert the filtered differential phase to its derivative, KDP.
The matrix Mn−(m−1)/2 ,n is composed of coefficients of the
m-point Savitzky–Golay (S − G) second-order polynomial
derivative filter, i.e.,

CS−G(i) =
6(2i − m − 1)

m(m + 1)(m − 1)
, i = 1, 2, . . . , m (2)

yielding (3), shown at the top of the page, where 0j means
zero at the jth column. With the m-point derivative filters
involved, KDP array can be expressed as Mn−(m−1)/2 ,nxT .
The linear inequality Mn−(m−1)/2 ,nxT ≥ Zn−(m−1)/2 serving
as the nonnegative KDP constraint can be merged into the
now augmented parts of the matrix–vector form of the LP
problem, in which Zn−(m−1)/2 is a zero vector. The modified
algebraic form is now minimizing c • xc under the constraint of
AAUGxc ≥ bAUG, which is the combination of the minimiza-
tion and nonnegative constraint. The augmented matrix AAUG

and vector bAUG can be expressed as

AAUG =

⎛

⎝
In −In

In In

Zn−(m−1)/2 ,n Mn−(m−1)/2 ,n

⎞

⎠ (4)

bAUG =
(
−b,b,Zn−(m−1)/2

)T (5)

respectively, where Zn−(m−1)/2 ,n is a zero matrix. Many tool-
kits have been developed to solve LP problems [24], [25]. It is

Where 𝐌LN ⁄(QN=) R,L is an derivative filter 
obtained from an m-point 2nd order Savitzky-
Golay polynomial 𝐶WNX(𝑖)
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Relative performance of KDP 
retrieval under different 

precipitation condition. The figures 
show KDP retrieval for a 

precipitating system with rain, 
heavy rain, heavy rain with large 

drops or hail. Attenuation correction 
has not been applied to reflectivity 

and differential reflectivity. 

Radar Data Processing: Specific Differential Phase (𝐾#')

phase wrapped rain



heavy rain/hail with contamination from backscatter phase



Radar Data Processing: Attenuation correction

The two-way cumulative attenuation and differential phase (or 𝐾#') are related to each other and this 
relationship can be used to retrieve specific attenuation.
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varying rainfall rates, the natural variation of DSD can be
expressed in normalized Gamma model as [11]–[14]

N(D) =Nwf(µ)

(
D

D0

)µ

exp

[
−(3.67 + µ)

D

D0

]

f(µ) =
6

(3.67)4
(3.67 + µ)µ+4

Γ(µ + 4)
(1)

where N(D) is the number of the raindrops per unit volume
per unit size interval, D (in mm) is the volume-equivalent
spherical diameter, D0 is the median volume diameter, µ is a
measure of the shape of the DSD, and Nw (mm−1 m−3 ) is the
intercept parameter of the exponential distribution with same
water content and D0 .

Radar observations in rain medium can be expressed in terms
of DSD. Reflectivity factors Zh,v at horizontal (h) and vertical
(v) polarizations can be expressed as

Zh,v =
λ4

π5 |Kw|2

Dmax∫

Dmin

σh,v(D)N(D)dD (mm6 m−3 ) (2)

where λ is the wavelength of the radar and σh,v represents
the radar cross sections at horizontal and vertical polarizations.
Kw is the dielectric factor of water defined as Kw = (ϵr −
1)/(ϵr + 2), and ϵr is the complex dielectric constant of water.
Differential reflectivity (Zdr) can be defined as the ratio of
reflectivity factors at horizontal and vertical polarizations [15],
which is sensitive to drop shape. Specific differential phase is
proportional to the real part of the difference in the complex
forward scatter amplitudes f at horizontal and vertical polar-
izations. It can be expressed as

Kdp =
180

π
λRe

Dmax∫

Dmin

[fh(D) − fv(D)] N(D)dD (deg km−1 ).

(3)

The two-way differential propagation phase φdp between two
range locations r0 and r is expressed in terms of Kdp as

φdp = 2

r∫

r0

Kdp(s)ds (4)

where s is the path for integration. The measured differential
propagation phase can be defined as

ψdp = φdp + δ (5)

where δ is the backscattering propagation phase that is the
difference between arguments of the complex backscattering
amplitudes for horizontal and vertical polarizations. Electro-
magnetic waves passing through precipitation suffer from the
power loss resulting from absorption and scattering. Specific at-
tenuation at two polarization states and differential attenuation
are related to DSD as

αh,v = 4.343× 10−3

Dmax∫

Dmin

σext(h,v)(D)N(D)dD (dBkm−1 )

(6a)
αdp =αh − αv (6b)

where σext is the extinction cross section (m2 ) derived by the
sum of the absorption cross section and scattering cross section.
At centimeter wavelengths, absorption dominates for all rain
rates [14]. Two-way cumulative attenuation Ah and differential
attenuation Adp can be expressed as

Ah =2

r∫

r0

αh(s)ds (7a)

Adp =2

r∫

r0

αdp(s)ds. (7b)

Attenuation can also be due to atmospheric gases or cloud
droplets. Although the attenuation of X-band radar signals
by atmospheric gases can be comparable to rain attenuation
for lighter rainfall [16], this paper is concerned with rain
attenuation which is dominant in many practical cases. For an
inhomogeneous rain path, observed reflectivity (Z ′

h,v) at each
polarization and differential reflectivity (Z ′

dr) can be defined as

Z ′
h,v(r) =Zh,v(r)e

−0 .46
∫ r
0 αh,v(s)ds (8a)

Z ′
dr(r) =Zdr(r)e

−0 .46
∫ r
0 αdp(s)ds. (8b)

The attenuation correction algorithms have all mostly focused
on retrieving Zh,v and Zdr at each range sample.

III. ATTENUATION CORRECTION SYSTEM FOR

REFLECTIVITY AND DIFFERENTIAL REFLECTIVITY

(ACS) AND SELF-CONSISTENT METHOD (SC-ACS)

Lim and Chandrasekar [9] suggested a DRPA, which has
introduced the usage of Zdr for attenuation correction. The al-
gorithm proposed here (ACS) is based on the method suggested
by Lim and Chandrasekar [9]. In order to develop the algorithm,
the main concepts in [9] are summarized as follows.

A. Main Concept of the DRPA

DRPA is based on the notion that the specific attenuation
can be retrieved by solving the integral equations for reflec-
tivity and differential reflectivity with a cumulative differential
propagation phase shift constraint. DRPA is based on four
parametrizations as described in (9)–(12)

Z ′
h,v(r) =Zh,v(r)e

−0 .46
∫ r
0 αh,v(s)ds (9)

αh(r) = a1 [Zh(r)]b1 [Zdr(r)]
c1 (10a)

αv(r) = a2 [Zv(r)]
b2 [Zdr(r)]

c2 . (10b)

The specific attenuation at horizontal and vertical polarizations
can also be approximated through Kdp as

αh(r) = γKdp(r) (11)

αdp(r) =καh(r). (12)

After modest algebraic manipulation, solutions for αh and αv

are obtained as (13) and (14), shown at the top of the next
page. Lim and Chandrasekar [9] used the above algorithm to
eliminate the constant Nw assumption. However, the variability
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• Modification of the Lim & Chandrasekar (2016) attenuation correction algorithm.
• Utilizes a series of self-consistency relationships for different shape relationships and 

temperatures based on scattering models.
• Cost optimization over several candidate solutions. 
• Can be tailored to individual sites, or used as-is. 



Attenuated Reflectivity Attenuated Corrected Reflectivity

X-SAPR I5 



HybridLP gives better spatial detail in 
specific attenuation than other 
algorithms. 



Self-Consistency Model

• The relations used in the attenuation correction algorithm come from scattering disdrometer
data at the site and fitting the relevant relationships. 
– This is done at a range of temperatures (0-30 C)
– And a range of drop shape models (Beard-Chuang, Thurai-Bringi, Andsager-Beard-Chuang, Pruppacher-

Beard
– For each relevant frequency. 



Self Consistency Model: Uncertainty Estimation

• We use ”bootstrap” to calculate uncertainties in self consistency coefficients. 



Geophysical Retrievals



Geophysical Retrievals – Hydrometeor Identification

• Hydrometeor identification (HID) is accomplished with the fairly standard 
neural-fuzzy network approach. 

• Algorithm from Dolan et al2.; implementation from open source CSU radar tools
• 10 class output

• HID Calculated once from each radar for use in QPE
– Limit rain rate estimation to liquid

• Calculated again on gridded data at end. 
– Avoids gridding categorical variable

2Dolan, B. and S.A. Rutledge, 2009: A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars. J. Atmos. Oceanic Technol.

General block diagram for fuzzy logic system from Bringi and Chandrasekar

Tempe
rature

https://journals.ametsoc.org/doi/abs/10.1175/2009JTECHA1208.1




Geophysical Retrievals - QPE

• Blended rain rate estimator
– Utilizes HID to reject ice categories.
– Multiple individual rain rate estimators combined

• Implemented as a decision tree. 
– Utilizes different rain rate relationships in different regimes. 
– Can be setup for multiple frequencies.

• Individual estimators are tuned using disdrometer data from campaign and T-Matrix scattering 
results.

• In liquid, Dm, Nw estimated using power law estimator2

1Cifelli, R., et. al., 2011: A New Dual-Polarization Radar Rainfall Algorithm: Application in Colorado Precipitation Events. J. Atmos. Oceanic Technol.
2Bringi, V. N., & Chandrasekar, V. (2001). Polarimetric Doppler weather radar: principles and applications. Cambridge university press.

Decision tree for method choice1

https://journals.ametsoc.org/doi/abs/10.1175/2010JTECHA1488.1


QPE

• Validation is run against nearby gauges and disdrometers. 
• For MC3E we used weighting bucket rain gauges as well as disdrometers from NASA and ARM 

and processed them with PyDSD to apply data filtering.

Radar network retrieved 
rain rate compared to 
weighing bucket over SGP 
on 5-20-2011Ra
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Gridding

• After parameters are 
calculated, the data is 
gridded onto a 3D 
rectangular grid. 

• After gridding, HID is run 
once more. 

• Quantities are then 
released on both 
spherical radar coordinate 
grid, and a cartesian grid 
matched to several 
resolutions. 
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DrizzleRain
Wet Snow

Aggregates

Ice Crystals

Time-Height Display of HID from Gridded PPIs. 



Real-time operation during CACTI

• Taranis was used to drive the CACTI quicklooks during the field campaign.
– Provided attenuation correction, KDP estimation, and quality flags

• The suite was run on a single computer co-located with the CSAPR radar in real-
time. 



Future Work

• We would like to extend the results into 
the melting layer and ice regions. 
– Target arctic and high frequency radars. 

• We are currently integrating the 
processing of Taranis cases into 
FLEXTRKR, a flexible object tracker for 
storms developed at PNNL that utilizes 
multiple instruments and platforms to 
track storm systems. 



• We’ve introduced a set of products that is robust and works at multiple sites, frequencies, and 
networks. 

• The algorithms are efficient, and run on multiple HPC clusters (STRATUS & NERSC)
• They have been used in model evaluation studies for CMDV. 
• Algorithms have been validated against disdrometers, rain gauges, and NEXRAD, as well as being 

compared to aircraft observations. 

• Datasets will be uploaded as PI datasets through ARM archive. 
– Several MC3E cases have been processed and distributed for evaluation. 
– MC3E datasets will be uploaded by end of August 2019

• Several cases from CACTI have been run as well and the rest of the campaign will be processed.
– Additionally currently running XSAPR  summer experiment from SGP. 

Conclusions


