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Theme of work...

* There are still major uncertainties as to how model
simulated drop size distributions (DSDs) compare to
observed DSDs

* We can take advantage of extensive DOE databases on
ground based drop size distributions by comparing to
model-simulated DSDs

 Validation of DSDs relates to model microphysical fields
that shape the DSDs and are strongly coupled to cloud
dynamics
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* Dolan et al. (2018) applied principal component analysis
(PCA) to global surface disdrometer dataset
 PCA provides a simplified statistical analysis
framework for studying precipitation variability
* |dentified six groups with common DSD
characteristics
* Inferred microphysical origins from radar data b5
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Leverage the PCA framework to statistically analyze precipitation physics using
large databases of observations and model simulations:
1) Assess ability of models to capture physical variability of observed DSDs
2) Connect cloud processes to surface DSDs by interrogating model output

RAMS Observations




RAMS simulation database:

« RAMS has been used for a wide variety of studies -> large database of different
types of precipitation and environments to tap into:
* Sea breezes (Grant)
* BSISO (Toms) > 4.2 Million points
e Supercells (Freeman) ossos 225
* QOceanic convection (Saleeby)
 Mid latitude MCSs (Marinescu)
* Approximately 50/50 tropical, mid-latitude
e Still missing some types and environments??

« RAMS 2-moment bulk microphysics (Saleeby and
van den Heever 2013)
e Extend to bin microphysics (HUCM SBM in
RAMS)
* Calculate DSD parameters at surface (D, N, M,
LWC, RR, N,) and apply PCA




RAMS PCA Results

* Nearly the same 15t two EOFs with model and

observations databases
* There are some differences:

* N, and N, in EOF 1 are not the same
 Differences in LWC/RR variability in EOF2
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* Six groups reside in same relative (but not
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* Model is largely capturing variability in
DSD seen by disdrometer dataset
* Pursue microphysical links to groups

with model simulations




RAMS: PCA Results

Digging a little deeper....

of disdrometers

* Prominent peak of high concentrations at

mean diameters near 1 mm

e Simulations live on a fairly narrow space

e Constraints of assumptions (e.g. fixed
shape parameter in 2 moment bulk?)
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* Low D, high N,, maybe be detection Iimit/ 5]

2

@]
-

3

Observation
Limitation?

V\

N Model
Limitation?

!

Group 1 Obs
Group 2 Obs
Group 3 Obs
Group 4 Obs

Group 5 Obs
Group 6 Obs

s Group 1 RAMS
= Group 2 RAMS

Group 3 RAMS

s Group 4 RAMS

Group 5 RAMS

mmm=Group 6 RAMS

/
0
0

* Higher concentrations of bigger
drops limitation of model




RAMS DSD Comparisons

 Sims more narrowly distributed 6. RAMS 6
* Imposed constraints?

* Most frequent simulation
log(N,,) values are higher
(higher number
concentrations)

logN,,

* Maybe disdrometer detection
limit?

* Conspicuous peak at Dy~ 1 mm — sl =] —

* These results are independent

of characteristics of the gﬁ'v's
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Exploring RAMS DSD:

Supercell Thunderstorm
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* Large mixing
ratios, heavy
precip

Frequency peak
around 1 mm for deep
convection and high
LWC.

2D ATEX Stratocumulus
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* Small mixing
ratios, low
LWC, barely
raining at
surface

Frequency peak
varies for rain drops
in shallow clouds
and low LWC.




The Problem with Drop Breakup

Rain Drop Self-Collection Efficiencies . | ;¢ grops are forced to breakup,

2 increasing number concentration and
0.6mm 1.06mm push mean diameter back to
equilibrium size (where E=0)
* Likely occurs in steady state rain
* |n nature (e.g. disdrometer
observations), larger drops are
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i Collection : proplet achieved more frequently than are
4 : Efficiency g Breakup
 Regime allowed
S T e os o 1 w1 i * Drop breakup has significant feedbacks
Rain Do (mm) to storm dynamics, structure, initiation,
—Efficiency(original) —Efficiency(extended) evolution COId pOOIS precipitation
) )
Verlinde and Cotton (1993) (Morrison et al. 2012)

Parameterization of rain drop breakup



The Problem with Drop Breakup

—= HUCM SBM coupled to RAMS | Bin

12} | EIBulk| e Many microphysics schemes

T i - represent collisional rain drop

breakup similar to Verlinde and

Cotton (1993)(e.g. RAMS,

Morrison)

| * Alternatives?

| | * Same issue using HUCM bin

1 2 3 4 5 6 microphysics parameterization
SEnCIoR DEnEE within the RAMS model
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Figure courtesy of Adele Igel, UC-Davis



¢ .Conceptual model of global DSD microphysical processes
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* Rain DSDs fall into 6 Groups with microphysical
origins based on PCA

* Model produces same relative modes of variability |
on macro scale -> contextualize observations ‘W

 Models lack breadth in DSDs seen by observations

* Overaggressive drop breakup

* Do we understand drop breakup enough to
accurately parameterize it?




Next Steps

* Analyze mircrophysical process rates from RAMS in
relation to DSD Groups

* Explore the influence of shape parameter on model’s
ability to simulate DSD

* Including in bin simulations where it can evolve

* Investigate collisional drop breakup parameterization

Come see our poster! #97 in Poster session A2!






The Problem with Drop Breakup

0.6mm 1.06mm
i ' * Implications and feedbacks:
Pal o =oEmee A% * |Impact on evaporation, cold pools,
P | Cotecton prop \ \ precipitation, storm structure and evolution
o e es om 1o \ [Morrison and Milbrandt 2011, Morrison et al.

 Shifting the Efficien
curve shifts the
equilibrium diameter

* 2012, van Weverberg et al. 2012]
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