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Introduction Experimental: Scattering enhancement Model-measurement comparison Conclusions Outlook

Aerosols take up water

• Ambient aerosol particles experience hygroscopic growth at enhanced relative
humidity (RH)

• Aerosol particle light scattering is strongly dependent on RH

→ Knowledge of the RH dependency is of importance for the calculation of the
aerosol radiative forcing ... and also needed for the comparison of remote
sensing measurements with (dry) in-situ data ... or for climate model
improvements

• Hygroscopicity also important for clouds, atmospheric resident times / removal,
measurement artefacts, etc.
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Example of differences in hygroscopicity in GCM’s (AeroCom II for 2004)

Fraction of AOD due to water (ECHAM5 with global annual average of 76 %; GOCART with 40 %)

Figures from Mian Chin (NASA Goddard)
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The effect of relative humidity on aerosol light scattering

Scattering enhancement factor

f (RH, λ) =
σsp(RH, λ)

σsp(RHdry, λ)

with λ: wavelength, σsp: scattering coefficient,
RH: relative humidity

Both size distribution and chemical
composition determine f (RH)

f (RH) can be measured using humidified
nephelometer systems
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The humidified nephelometer (WetNeph)
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The (a) NOAA and (b) PSI system (Fierz-Schmidhauser et al., 2010).
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Scattering enhancement factor

f (RH, λ) =
σsp(RH, λ)

σsp(RHdry, λ)

with λ: wavelength, σsp: scattering coefficient,

RH: relative humidity

Instrumental differences

• NOAA system only measures lower
branch/deliquescence

• PSI system uses active drying after
humidifier → can measure parts of the
upper branch
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The dry reference scattering coefficient: What is dry?

RH climatology of various dry nephelometer measurements separated by station type.
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(a) Scattering enhancement at various European sites and (b) for inorganic sea salt
(modelled and measured). Taken from Andrew et al. (2019, in prep.) and Zieger et
al. (2017).

A significant bias could be
introduced by insufficient drying
of aerosols

• GAW/WMO guideline for aerosol
monitoring:

RHdry < 30 − 40 %

• Not always achieved (e.g. marine
sites)

• Important for sea salt
(efflorescence RH)

• Ideally RHdry be much lower
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The new benchmark dataset of scattering enhancement
• Standardized re-analysis of 26

datasets (mostly DoE and
ACTRIS) of RH-dependent
scattering and backscattering
coefficients, f (RH), fb(RH)

• Harmonized dataset openly
available + data descriptor
paper

Temporal data coverage of re-analysed sites.

Overview of re-analysed sites with mean values of f (RH=85%/RHdry) for PM1/PM2.5
(left triangles) and PM10/whole-air inlet systems (right triangles).
Source: Burgos et al. (2019, in review)
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First global climatology of the scattering enhancement factor

Boxplot of f (RH=85 %) at λ = 550 nm segregated by single scattering albedo (SSA). Source: Titos et al. (2019, in prep.)

• Most sites show increased f (RH) for less absorbing aerosol
• Exceptions for certain sites with possible pronounced size effect: smaller & less

hygroscopic aerosol may show similar or smaller f (RH) compared to larger but
more hygroscopic aerosol (e.g. sea spray, see Zieger et al., 2010)
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Model-measurement comparison

GEOS5- MERRAero
(MERRA)

CAM5.3
(CAM)

CAM5-ATRAS
(ATRAS)

CAM5.3-Oslo
(OSLO)

GEOS5-GLOBASE
(GLOBASE)

GEOS-CHEM
(CHEM)

+ observations

• Part of the AeroCom phase III experiments

• Model output: Scattering coefficient at
RH= 0, 40, 85 % and λ = 550 nm for 2010 for
20 coincident sites with observational data

• Monthly average (note: only 3 sites are
co-located in time for 2010)

• Note: All models have different
parameterizations for hygroscopic growth and
particle size (see poster)!
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Example for 2010 (co-located in time): Southern Great Plains

Modelled f (RH) for Southern Great Plains with RHdry = 0 % as
reference. Measurements are shown at actual measured RH.

Modelled f (RH) for Southern Great Plains with RHdry = 40 % as
reference. Measurements interpolated to RHdry=40 %.

• Comparison at RHdry = 40 % more suitable to compare at same conditions (not
fully dried particles).
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Example for 2010 (co-located in time): Barrow / North Slope of Alaska

Modelled and measured f (RH) for Barrow with RHdry = 0 % as reference
(measurements not corrected).

Modelled and measured f (RH) for Barrow with RHdry = 40 % as
reference (measurements interpolated).

• Measurements in Barrow should be less affected by remaining water (lower RHdry)

• Some models show large change in f (RH) if RHdry = 0 % or RHdry = 40 % is
taken as reference
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Example for 2010 (co-located in time): Graciosa

Modelled and measured f (RH) for Graciosa with RHdry = 0 % as
reference (measurements not corrected).

Modelled and measured f (RH) for Graciosa with RHdry = 40 % as
reference (measurements interpolated).

• Models for GRW, SGP and BRW and 2010 are usually higher than measurements

• Models show a large site-specific diversity
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Comparison of entire data set with 2010 model data

Comparison of the entire dataset for Barrow (North Slope of Alaska), Southern Great Plains, Graciosa and Niamey.

• Dust dominated sites are captured well by models (low hygroscopic growth)

• Consistent model biases even among various different site types (rural vs. marine)
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Comparison of entire data set with 2010 model data

• Some models correlate with
measurements better than others

• Models mainly over-estimate
f (RH)

• Large diversity among models

• Caution: Airmass-specific and
temporal characteristics are
masked out but can still be
significant

• More details at the poster!
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Conclusions

• The new benchmark dataset of RH-dependent particle light scattering
coefficients and scattering enhancement factors f (RH) has been finalized and
successfully tested again-st six GCM’s

• Models generally overestimate f (RH) but comparison improves if
RHdry = 40 % is taken as reference RH

• Models show a large diversity in f (RH) with respect to magnitude and temporal
evolution (e.g. seasons).Reasons are manifold: differences in model
paramerizations of e.g. hygroscopicity, size, sources + strength, mixing state,
removal processes, etc.

• Further evaluation needs the addition of the size & chemical composition to
the analysis

• Importance of sufficient drying for continuous field observations
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Is it worth the effort? Yes, small changes matter!

Impact of reduced inorganic sea salt hygroscopicity within a general circulation model. Model results for different κ-values. (a) Global map of AOD.
(b) Latitudinal mean of the AOD(550nm) (c) Percental change in AOD. Taken from Zieger et al., 2017.

Inorganic sea spray: Reduction of hygroscopic growth factor by ≈ 10 % → reduction
in aerosol optical depth (AOD) by ≈ 10− 15 %.
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Outlook

• Further AeroCom modelling experiment with additional information on size
and chemistry and closure/sensitivity study using Mie theory

• Finalization of papers:
• Data descriptor paper
• Model-measurement comparison
• What is dry?
• f (RH) climatology

• Global comparison to CALIOP extinction coefficients to evaluate lidar ratio
scheme (similar to Tesche et al. (2014), depending on funding)
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Advantages of humidified nephelometer measurements

• HTDMA captures size dependent hygroscopic growth & mixing state; limited to
submicrometer size range

• WetNeph captures entire optical important size range; usually no size cut (or PM1

and PM10 cyclone)
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What determines the scattering enhancement?
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BC or organics

Modal sizes and relative amounts of ...

Inorganic salts Sea salt Mineral dust

very low f(RH)high f(RH)high f(RH)very low to low f(RH)

• Fine mode: e.g. Aerosol Mass Spectrometer (AMS)
• Coarse mode: e.g. filter techniques
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Comparison of entire data set with 2010 model data

Comparison of entire data set with RHdry = 0 % as reference. Comparison of entire data set with RHdry = 40 % as reference. 20
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Comparison of entire data set with 2010 model data

Relative difference between modelled and measured f (RH) with
RHdry = 0 % as reference.

Relative difference between modelled and measured f (RH) with
RHdry = 40 % as reference.

• Improvement in comparison if RHdry = 40 % is taken as reference
• Models mainly over-estimate f (RH)
• Large diversity among models
• Caution: Site-specific and temporal characteristics are masked out but can still be

significant
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