Particle-Phase Diffusion Limitations in Fresh Isoprene Secondary Organic Aerosol

Yuzhi Chen, Rahul A. Zaveri, Gregory W. Vandergrift, Zezhen Cheng, Swarup China, Alla Zelenyuk, John E. Shilling

Contact Info: John Shilling (509) 375-6874 john.shilling@pnnl.gov

Motivation

Previous studies (Shilling et al., 2020, Zaveri et al., 2018, 2020) have shown

- \circ Fresh isoprene SOA (iSOA) is unable to partition into aged (16–18 h at [OH] ~ 2 × 10⁶ molecules cm⁻³) SOA (e.g. derived from α -pinene and isoprene photooxidation).
- o Traditional vapor-pressure dependent equilibrium partitioning model overpredicts observed SOA growth due to the neglection of kinetic **or** thermodynamic limitations.

50 r

40

33

E 30

10

200

100

300

Expt Time (min)

In this work, we continue to explore

• The influence of aging on inducing non-equilibrium partitioning behavior.

Growth Period 1 (P1) Results

Experimental

NATIONAL LABORATORY

Diffusion limitation is not needed to model growth in P1.

- MOSAIC box model was used to predict size distribution evolution.
- A liquid-like scenario is sufficient to reasonably reproduce the evolution of size distribution in P1. • A semi-solid scenario predicts taller and slimmer size distributions.

No. of Expts	P1	Photochemical Age (hr)	P2	RH (%)	Temperature (°C)
	lsoprene (ppb)		Isoprene (ppb)		
4	107 ± 13	0	66 ± 3	52.2 ± 0.1	22.4 ± 0.4
4	94 ± 4	1 (1.01 ± 0.03)	69 ± 9	50.9 ± 2.4	23.9 ± 1.6
4	97 ± 6	3 (2.82 ± 0.31)	66 ± 8	51.4 ± 4.4	23.1 ± 1.6
3	100 ± 3	6 (6.28 ± 0.37)	68 ± 5	51 ± 2	22.7 ± 0.4

Growth Period 2 (P2) Results

Equilibrium partitioning model significantly overpredicts OA in P2.

 \circ A four-product model (C* = 0.1, 1, 10, 100 µg m⁻³) was used to test for non-equilibrium partitioning behavior.

Preliminary NanoDESI-MS results reveal formation of oligomers and organosulfates

observations for P2.

Partitioning limitation for P2 observed even with minimum aging after P1.

ASR

Atmospheric

 \circ Multiple dimers and C₅H₁₁O₇S⁻, presumably methyltetrol sulfate (IEPOX-OS monomer), were identified. • Previous studies have shown IEPOX-OS inhibits IEPOX reactive uptake (Riva et al., 2019); oligomers may also induce mass transfer limitations (Zaveri et al., 2018).

 \circ Two previously reported major hydroxyhydroperoxides (C₅H₁₂O₅ and C₅H₁₂O₆) were also identified (Krechmer et al., 2015; Riva et al, 2016; Liu et al., 2016).

• We will collect MS/MS data on the most intense MS peaks to get structural information.

Summary

○ P1 exhibits equilibrium partitioning behavior.

- P2 exhibits non-equilibrium partitioning behavior regardless of post P1 aging time and conditions (light or dark).
- Together, these results indicate some chemical and/or physical process has occurred shortly (<0.5 h) after P1,
- which inhibits partitioning between fresh iSOA vapors and aged SOA in P2.
- The exact cause of the non-equilibrium partitioning is currently unknown and needs to be investigated further. A

PNNL is operated by Battelle for the U.S. Department of Energy

00 đ. 8 P

• Zaveri RA et al (2018). Environ Sci Technol 52:1191–1199. **References:** https://doi.org/10.1021/acs.est.7b04623 Krechmer JE et al (2015). Environ Sci Technol 49:10330–10339. Shilling JE et al (2019). ACS Earth Space Chem 3:2704–2716. https://doi.org/10.1021/acs.est.5b02031 https://doi.org/10.1021/acsearthspacechem.9b00248 Riva M et al (2016). Environ Sci Technol 50:9889–99. https://doi.org/10.1021/acs.est.6b02511

Riva M et al (2019). Environ Sci Technol 53:8682–8694. https://doi.org/10.1021/acs.est.9b01019 • Liu, J et al (2016). Environ Sci Technol 50:9872–9880. https://doi.org/10.1021/acs.est.6b01872 Zaveri RA et al (2020). Environ Sci Technol 54:2595–2605.

https://doi.org/10.1021/acs.est.9b05514